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ABSTRACT

Motivation: MicroRNA (miRNA) is a set of newly discovered non-
coding small RNA molecules. Its significant effects have contributed
to a number of critical biological events including cell proliferation,
apoptosis development, as well as tumorigenesis. High-dimensional
genomic discovery platforms (e.g. microarray) have been employed
to evaluate the important roles of miRNAs by analyzing their
expression profiling. However, because of the small total number
of miRNAs and the absence of well-known endogenous controls,
the traditional normalization methods for messenger RNA (mRNA)
profiling analysis could not offer a suitable solution for miRNA
analysis. The need for the establishment of new adaptive methods
has come to the forefront.
Results: Locked nucleic acid (LNA)-based miRNA array was
employed to profile miRNAs using colorectal cancer cell lines
under different treatments. The expression pattern of overall miRNA
profiling was pre-evaluated by a panel of miRNAs using Taqman-
based quantitative real-time polymerase chain reaction (qRT-PCR)
miRNA assays. A logistic regression model was built based on
qRT-PCR results and then applied to the normalization of miRNA
array data. The expression levels of 20 additional miRNAs selected
from the normalized list were post-validated. Compared with other
popularly used normalization methods, the logistic regression model
efficiently calibrates the variance across arrays and improves miRNA
microarray discovery accuracy.
Availability: Datasets and R package are available at http://gauss
.usouthal.edu/publ/logit/
Contact: xi@usouthal.edu

1 INTRODUCTION
MicroRNAs (miRNAs) are naturally occurring small single-
stranded non-coding RNAs (ncRNAs) that mediate gene expression
at the post-transcriptional and translational level in both plants
and animals. The first miRNA, lin-4, was initially discovered
over a decade ago in Caenorhabditis elegans and controls the

∗To whom correspondence should be addressed.

timing and progression of the nematode life cycle (Feinbaum and
Ambros, 1999; Lee et al., 1993; Reinhart et al., 2000). However,
the importance of miRNA research has not been appreciated until
recently with the discoveries of hundreds of miRNAs in worm, fly
and mammalian genomes (Berezikov et al., 2005; Lagos-Quintana
et al., 2003). Many miRNAs are evolutionarily conserved, indicating
that these miRNAs are involved with essential biological processes
such as development, cell growth, differentiation, apoptosis and
tumorigenesis (Baskerville and Bartel, 2005; Carmell et al., 2002;
Esquela-Kerscher and Slack, 2006; Karube et al., 2005; Lee et al.,
2005; Sempere et al., 2003; Takamizawa et al., 2004).

The miRNA research has come to the forefront thanks to
their unique signatures. In contrast to messenger RNA (mRNA),
miRNAs are regulatory molecules that come in small numbers
(<1000). Their small size translates into the stable analysis of
clinically archived samples (Xi et al., 2007). Moreover, miRNA
regulates >30% of all human genes at the post-transcriptional and
translational levels. The substantial value of miRNAs for diagnostic
and prognostic determination as well as for eventual therapeutic
intervention has been demonstrated (Nakajima et al., 2006; Xi
et al., 2006a). Along with increasing interest in miRNAs, most
well-established molecular and biological technologies have been
successfully transferred into miRNA research, such as microarray
and qRT-PCR.

Microarray is a high-dimensional discovery tool for genomic
research. Probe-target hybridization is the central concept to
determine relative abundance of nucleic acid sequences through
fluorescence-based detection (D’Auria et al., 2003). Therefore, in
microarray experiments, variations of expression measurements
among arrays can be attributed to many different sources,
including sample preparation, dying, image intensity and microarray
hybridization, scanning and equipment errors, etc. Normalization is
an essential step to reduce non-biological errors and convert raw
data to valid results. For mRNA, we can assume that (i) the total
number of mRNA transcripts is abundant; (ii) the expression level
of a majority of genes is constant. These assumptions are valid when
a large transcriptome chip with thousands of genes is applied. The
miRNA arrays are usually low density spotted arrays due to the fact
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that the total number of miRNAs (∼1000) is much smaller. As a
result, normalization methods based on the above two assumptions
might not be feasible for miRNAs. Also, there are few validated
housekeeping miRNAs that can be perfectly used as specific control
spots for normalization.

In this study, we propose to calibrate the probe-to-probe variations
on miRNA array data by introducing external information from
the qRT-PCR results. qRT-PCR is a prevalent molecular analysis
technique for amplification and simultaneous quantification of a
target molecule. Over the past few years, the development of
novel chemistries and instrumentation platforms enabling detection
of PCR products on a real-time basis have led to widespread
adoption of qRT-PCR. It is becoming the preferred method and the
gold standard for validating results obtained from array analyses
and other techniques that evaluate global gene expression changes
(Schmittgen et al., 2008). Here, we built a logistic regression model
using qRT-PCR results together with some auxiliary information in
order to normalize the array data. The performance of the proposed
method is also compared with some existing normalization methods.

2 MATERIALS AND METHODS

2.1 Cell lines and reagents
The HCT-116 (wt-p53) and HCT-116 (null-p53) cell lines were a gift from Dr
Bert Vogelstein at The Johns Hopkins University (Baltimore, MD, USA) and
were described in detail previously (Bunz et al., 1998, 1999). Both cell lines
were maintained in McCoy’s medium supplemented with 10% fetal bovine
serum, 1 mM/l sodium pyruvate, 2 mM/l L-Glutamine and antibiotics. All
cell lines were grown at 37◦C in a humidified incubator with 5% CO2.
5-Fluorouracil (5-FU), oxaliplatin (OX) and Irinotecan (CPT-11) were
purchased from Sigma Inc. (St. Loius, MO). Two cell lines were treated
by these three drugs individually at the concentrations of 5 µM, 0.5 µM and
5 µM for 24 h prior to being harvested. The non-treated cell lines served as
controls. Throughout this article, we regard each cell line under any of the
above three drugs or no treatment as a ‘sample’. Thus, a total of eight (8)
‘samples’ were involved in this study.

2.2 miRNA expression analysis using locked nucleic
acid miRNA array

Total RNA was isolated from treated samples and controls using the standard
protocol (Xi et al., 2006b). One microgram of total RNA was labeled with
the miRCURY LNA miRNA Array labeling kit (Exiqon Inc., Vedbaek,
Denmark) following the manufacturer’s instructions. The labeled samples
were loaded on the miRCURY LNA miRNA Array v7.5.0 (Exiqon Inc.)
and hybridized for 16 h at 60◦C. The slides were scanned by an Axon
GenePix Professional 4200A microarray scanner (Molecular Devices Corp.,
Sunnyvale, CA). ImaGene 7.0 (BioDiscovery Inc., El Segundo, CA) gridded
the images and generated the digital raw data. Each sample was duplicated
for the array experiment, and each array includes four replicated probes for
every miRNA. As a result, a total of eight measurements were captured for
each miRNA.

2.3 qRT-PCR analysis for miRNA expression
Total RNA isolated from each sample was profiled using Taqman-based
qRT-PCR on an ABI 7500HT instrument (Applied Biosystems Inc., Foster
City, CA). All qRT-PCR reagents were purchased from ABI, unless
otherwise mentioned. The experiments were conducted by following strictly
the manufacturer’s instructions. Each sample was amplified in triplicate.
Profiling data based on 37 randomly selected miRNA assays were initially
employed to build a logistic regression model for normalization. The

A B

Fig. 1. Distributions of the log2-transformed intensity measures for HCT-
116 (null-p53) (A) and HCT-116 (wt-p53) (B). The density curves were
generated with function density in CRAN R with default parameters.

additional 20 miRNAs selected from the normalized data were post-tested
using qRT-PCR again. The results were used to validate predictions made
by the logistic regression model. Gene expression, �CT , values of the
selected miRNAs from each sample were calculated by normalizing with
the internal control RUN6B, and relative quantitation (RQ) values were
calculated according to standard formulas (Livak and Schmittgen, 2001).

2.4 Data
A total of 359 miRNAs were profiled for all eight samples using locked
nucleic acid (LNA) miRNA microarray. Due to the fact that the intensity
measures of many miRNAs are close to the background, the measurements
close to zero are dense. To gain a better view of the distributions of the data
from all arrays, we took the base-2 logarithms of the averaged intensities
of the replicates after background noise subtraction. The estimated density
curves are shown in Figure 1. For both cell lines, the distributions under
different treatments demonstrate similar shapes.

2.5 Normalizing miRNA data by fitting a logistic
regression model

Let xijk be the intensity of miRNA k under treatment j for sample i, where
k =1,...359, j=0,1,2,3 for control, OX, 5-FU and CPT-11, respectively,
and i=1,2 for HCT-116 (wt-p53) and HCT-116 (null-p53), respectively.
The proposed normalization method consists of the following two stages:

Stage 1: normalize arrays from the three treatments for different samples by
assuming that the majority of the miRNAs do not change significantly. To
achieve this, we first compute the fold changes (FCs) by

FCijk = xijk

xi0k
for i=1,2, j=1,2,3 and k =1,...,359. (1)

Second, we sort the FC values and compute a p%-trimmed mean, FCij , by
dropping p% of the FC values at each of the two ends. The (100−2p)% of the
miRNAs with FC values in the middle are not believed to be differentially
expressed. The choice of the value of p depends on the distribution of FC
values. In our study, p=25 is sufficient. Third, normalize the arrays by

x′
ijk = xijk

FCij
for i=1,2, j=1,2,3 and k =1,...,359. (2)

Stage 2: fit a logistic regression model and justify the expression patterns
by external information from qRT-PCR and auxiliary variables (sample and
treatment types). Throughout this study, we assume that the qRT-PCR results
reflect the true expression patterns and they will be used as gold standards to
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Fig. 2. Scatter plot of the array intensity fold changes (labeled as FC on
Y -axis) against the qRT-PCR RQ values (labeled as RQ on X-axis).

calibrate the array results (Schmittgen et al., 2008). A set of 37 miRNAs, of
which we had Taqman assays available in our lab, were selected and tested by
qRT-PCR. Figure 2 shows the scatter plot of the qRT-PCR RQ values against
the corresponding array intensity FCs after a scaling normalization by the
median. We find that there is no significant linear relationship between the
qRT-PCR RQ values and the intensity FC values. The Pearson correlation
coefficient between the RQ and FC is −0.072 with P-value 0.485, which
indicates that the relationship between the RQ and FC might be non-linear,
or there might exists gene- and platform-specific effects. As a result, a linear
normalization method can hardly work well. To improve the consistency
between the two platforms and hence improve the normalization, a non-
linear normalization method should be considered. In this study, we relax
the assumption by assuming that the miRNA expression patterns (regulation
trends such as up- or downregulated or no significant change) from the array
and qRT-PCR results are consistent. This also relaxed our assumption of
using the qRT-PCR results as a ‘gold standard’, and led to a less strict
assumption that for the same sample the two platforms (array and qRT-PCR)
shall have similar predicted regulation trends . We built a logistic regression
model as follows using the RQ values:

logit(zijk)=β0 +β1 log(x′
ijk)+β2 log(FCijk)+Tj ∗Si +εijk, (3)

where i=1,2, j=1,2,3, k =1,...,359 and logit(x)= log(x/(1−x)), zijk =
Pr(Yijk =1) is the probability of Yijk =1. Yijk is an indicator showing whether
the k-th miRNA is up- or downregulated according to the RQ values. The
reason that we consider taking the logarithm of FCijk is that the FC values
are asymmetric: downregulated miRNAs occupy the scale from 0 to 1,
whereas the upregulated miRNAs occupy the scale from 1 to ∞. After
taking the logarithm, the scales for both up- and down-regulated genes
become symmetric. In addition to associating the expression patterns from
the qRT-PCR and arrays, we also considered the effects of sample type
Si and treatment type Tj . We checked and found there was no significant
interaction effect between the sample and treatment types. The logarithm of
the normalized intensity x′

ijk was included in the model due to the fact that the
significance of the observed FCs depends on the absolute expression levels
of the miRNAs. The biological variance of a miRNA with lower intensity
measurements is more likely to be masked by the non-biological variances
and the inclusion of log(x′

ijk) can reflect this effect to some extent. An
error term εijk is adopted to explain the non-biological errors from different
experiments.

The up- and downregulation trends were predicted separately. Specifically,
to predict the upregulation trends, we first determine whether a miRNA
is upregulated (Yijk =1) or not (Yijk =0 ) by the qRT-PCR results with a
preselected cutoff. Throughout this study, we choose 2.0 as a cutoff for the
qRT-PCR RQ values: a miRNA is classified to be upregulated if RQijk >2.0.
Second, we fit the model in (3) based on the 37 selected miRNAs. Third, we
use the fitted model to predict that the upregulation trends of the miRNAs
are not selected. To predict the downregulation trends, we set Yijk =1 if
RQijk <1/2.0, and Yijk =0 otherwise. The rest of the steps are similar to
those in predicting the upregulation trends.

By discretizing the RQ values into up/downregulation trends, attention
needs be paid to the overdispersion in the logistic regression model fitting.
In this study, we adjust for overdispersion with the quasilikelihood approach
(Agresti, 1996).

3 RESULTS

3.1 Measures of the performance of the normalization
methods

We assume the microarray results can reveal the actual changes of
miRNAs after appropriate normalization, and the intensity-based
FCs are supposed to show consistency with the qRT-PCR results.
To evaluate the performance of the proposed normalization method,
another set of 20 miRNAs were selected from the normalized list to
be post-tested for validation. To measure the consistency, we adopted
the following four criteria:

(1) Pearson’s correlation coefficient, which measures the
linear association between two random variables. After
normalization, the Pearson’s correlation coefficient between
RQ and FC will be computed.

(2) Weighted kappa test, which can be used to measure the
consistency between two raters (Cohen, 1960; Fleiss, 1981;
Fleiss and Cohen, 1973; Fleiss et al., 1969). There are
only three possible outcomes for each miRNA, upregualted,
downregulated or no significant change, based on either
the qRT-PCR RQ values or FCs. Here, we considered a
weighted Kappa statistic to assess the consistency between
the predicted and qRT-PCR results. The qRT-PCR and LNA
array results will be treated as two raters who rate the
miRNAs with scores: −1 (downregulation), 0 (no significant
change) and 1 (upregulation). Let w(z1,z2) be the weight
for the qRT-PCR result z1 and the predicted result z2.
The weights were selected as follows: w(−1,0)=w(0,−1)=
w(1,0)=w(0,1)=1/2, w(−1,−1)=w(0,0)=w(1,1)=1 and
w(−1,1)=w(1,−1)=0. Landis and Koch (1977) interpreted
the kappa values as following: (a) <0: no agreement; (b)
0.0–0.2: slight agreement; (c) 0.21–0.40: fair agreement; (d)
0.41–0.60: moderate agreement; (e) 0.61–0.80: substantial
agreement; (f) 0.81–1.00: almost perfect agreement.

(3) False acceptance rate (FAR), which is defined as the
total probability of either a non-upregulated miRNA being
classified as upregulated or a non-downregulated miRNA
being classified as downregulated.

(4) False rejection rate (FRR), which is defined as the total
probability of either an upregulated miRNA being rejected
as an upregulated miRNA or a downregulated miRNA being
rejected as a downregulated miRNA.

3.2 Existing normalization methods
To evaluate the performance of the proposed method, the following
six existing normalization methods will be applied and their
performances will be compared with the proposed method.

(1) No normalization: as suggested by some literature, results
will be obtained by simply performing background signal
subtraction on the miRNAmicroarray (Baskerville and Bartel,
2005; Liang et al., 2005; Schmittgen et al., 2004).
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(2) Median normalization: all the miRNA microarrays are
assumed to have a common median and each of the miRNA
microarrays is normalized based on its median (Calin et al.,
2004a, b; Liu et al., 2004).

(3) Scaling method by U6 probes: U6 is a ncRNA that is a
component of the spliceosome, which is involved in RNA
splicing of the pre-mRNA. The RNA sequence of U6 is
the most highly conserved across organisms of all five
of the small nuclear RNAs (snRNAs) (Brow and Guthrie,
1988), suggesting that the function of the U6 snRNA is
both crucial and unchanged through evolution. The Exiqon
miRNA array has included two U6 probes (U6-snRNA-1 and
U6-snRNA-2). Due to their stability, the two U6 probes can
be used as normalizers.

(4) Invariants: efforts have been made to normalize miRNA
microarray data by finding one or more probes that do not
change across arrays (Davison et al., 2006; Garzon et al.,
2008; Hua et al., 2008; Pan et al., 2008; Perkins et al., 2007;
Pradervand et al., 2009; Rao et al., 2008) In the same spirit
of Pradervand et al. (2009), we find a set of miRNAs that
do not change significantly according to their qRT-PCR RQ
values. The miRNAs with RQ values that are not significantly
different from 1.00 across arrays were selected, and the data
from different arrays were then normalized by the mean value
of the selected miRNAs.

(5) Cyclic loess: this approach was first presented by Dudoit
et al. (2002) and Mascellani et al. (2008). For each pair of
arrays (Xijk,Xij′k) with fixed j �= j′, i=1,2 and k =1,...,359,
we first consider the M = log(Xij/Xij′ ) versus A= (log(Xij +
log(Xij′ )/2 plot. Second, we fit a loess curve by regressing M
on A, and denote the fitted values by ̂M. Third, we set D=
exp((M −̂M)/2) and justify Xijk and Xij′k by X ′

ijk =Xijk ×Dk

and X ′
ij′k =Xij′k/Dk .

(6) Quantile method: the quantile normalization method is first
proposed under the assumption that there is an underlying
common distribution of intensities across arrays (Bolstad
et al., 2003; Garzon et al., 2008; Northcott et al., 2009). It is
based upon the concept of quantile–quantile plot extended to
n-dimensions. Figure 1 shows that although the total number
of miRNAs is small, the density curves of the intensity
measurements from different arrays have similar shapes.
Thus, the ‘common distribution’ assumption by the quantile
normalization method is not severely violated and hence it
can be applied in this analysis. The quantile normalization
method has been implemented in R package affy and freely
available from the The Comprehensive R Archive Network
servers over the internet.

Methods 2–4 are scaling normalization methods and methods
5 and 6 and the proposed new method are non-linear. Rao
et al. (2008) and Pradervand et al. (2009) performed a fairly
comprehensive analysis to compare the performances of the existing
one-color miRNA microarray normalization techniques. The results
from both papers showed that the quantile normalization method
performed best, while Pradervand et al. (2009) showed that both
the invariant method and quantile method achieved satisfying
performances.

Table 1. Performance comparisons among different normalization methods

Method PCC P-value WKappa FAR FRR
(%) (%)

None −0.055 0.60 0.083 67.74 51.22
Median −0.103 0.32 0.066 70.91 60.98
U6 −0.097 0.35 0.071 69.09 58.54
Invariant 0.028 0.79 0.072 80.00 58.54
Loess 0.021 0.84 0.123 64.41 48.78
Quantile −0.005 0.96 0.220 63.16 48.78
Logit 0.198 0.055 0.224 61.29 41.46

Logit∗ −0.072 0.485 0.069 69.23 60.98
Logit∗∗ 0.060 0.611 0.041 70.83 65.85

Note: PCC refers to the Pearson’s correlation coefficient. Here, PCC is used to measure
the linearity between the two vectors of average intensities from the control and treated
samples after background subtraction; WKappa is the values of the weighted kappa
statistic. FAR refers to the overall rate of miRNAs that are falsely classified as up-
or downregulated miRNAs; FRR refers to the overall rate of miRNAs that are falsely
rejected as up- or downregulated miRNAs.

3.3 Performance comparisons
The validation results for the different methods are summarized
in Table 1. In Table 1, the second column shows the correlation
coefficients between RQ and FC, and the third column shows the
corresponding P-value. The correlation coefficient for the logistic
regression method is computed based on the FCs after normalization
from Stage 1. We see that none of the normalization methods being
compared show significant linear relationship between RQ and FC.

The values of the weighted kappa statistic are shown in column 4.
Based on the results of the weighted kappa tests, we see that only the
quantile normalization and logistic regression methods demonstrate
fair agreement (both have a P-value of 0.003), which shows that both
the logistic regression and quantile normalization methods work
well. Fair consistency can be observed between the two platforms
of qRT-PCR and miRCURY LNA array after employment of either
the logistic regression or the quantile normalization method. All the
other methods have P-values >0.05, which indicates that the weight
kappa statistics are not significantly different from zero.

The information of FAR and FRR are shown in columns 5 and 6.
In terms of FAR and FRR, the logistic regression method has better
performance than the other methods: the logistic regression method
achieves the smallest FAR and FRR values. The performances of
the loess method and the quantile normalization method are similar.

To demonstrate the role of Stage 1 preprocess, we analyzed the
data with and without Stage 1. The results by Stage 1 alone are
shown in the line labeled ‘Logit∗’; and the results without Stage 1
are shown at the bottom line labeled ‘Logit∗∗’. We found that Stage 1
is important to improve the overall performance of the proposed
method. It can roughly align the FCs of samples under different
treatments and enhance the prediction accuracy. More details are
provided in Table 2 about the logistic regression and quantile
normalization methods. From Table 2, we see that the quantile
normalization method is somewhat better than the logistic regression
method in identifying the downregulated miRNAs, while the logistic
regression method works better than the quantile normalization in
identifying upregulated miRNAs.

Figure 1 shows that the distributions of the intensity
measurements from different experiments have similar patterns.
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Table 2. Comparisons of the predicted results by the logistic regression and
quantile normalization methods

Logistic regression Quantile normalization

rt.down rt.nsc rt.up rt.down rt.nsc rt.up

fc.down 4 7 5 5 14 5
fc.nsc 4 25 4 4 26 8
fc.up 4 22 20 3 14 16

FRR (%) 66.7 53.7 31.0 58.3 51.8 44.8

Note: a prefix ‘rt’ indicates that the results are obtained from the qRT-PCR and a
prefix ‘fc’ indicates results from array under a specific normalization method. ‘down’
indicates downregulation; ‘nsc’ indicates no significant change; and ‘up’ indicates
upregulation. FRR refers to the overall rate of miRNAs that are falsely rejected as
up- or downregulated miRNAs.

Table 3. Choice of the number of miRNAs

Avg. Standard Avg.FAR Standard Avg.FRR Standard
n WKappa Error (s.e) (%) Error (s.e) (%) Error (s.e)

29 0.224 – 61.29 – 41.46 –
25 0.210 0.019 61.99 1.07 43.73 4.4
20 0.192 0.028 62.84 1.64 47.56 6.73
15 0.175 0.042 63.72 3.06 52.66 9.94
10 0.134 0.057 66.24 4.35 61.17 12.3
8 0.114 0.053 67.53 4.64 66.02 11.93

Thus, the ‘common distribution’ assumption by the quantile
normalization method is not severely violated and hence the quantile
normalization works well in this analysis.

3.4 Investigation of miRNA number for building the
logistic regression model

Among the 37 miRNAs, 8 miRNAs have no valid qRT-PCR
measures and the information of 29 miRNAs were used in fitting
the logistic regression model. To investigate the possibility of using
a smaller amount of miRNAs to fit a logistic regression model for
normalization, we randomly selected a subset of size n, fitted a
logistic regression model, and checked the performance of the fitted
model. This procedure was repeated 100 times, and the results are
shown in Table 3.

In Table 3, the first row shows the results of the fitted model by
using the information of all available miRNAs. For n=25,20,15,10
and 8, the average weighted kappa statistics, FAR and FRR
were computed based on the results from 100 iterations, and the
corresponding standard errors were also listed. We found that when
the number of miRNAs decreases, the average weighted kappa
decreases, meanwhile the average FAR, average FRR and standard
errors increase. Overall, the larger the number of miRNAs, the better
the fitted model and its performance. Though, when n becomes
too small, say n=6, we had trouble fitting the logistic regression
model based on the selected subset of miRNAs, and thus failed to
obtain robust prediction results. From Tables 2 and 3, we see that

when n=29, the logistic regression method has slight improvement
over quantile normalization. When n=20 and n=25, although
the logistic regression method has smaller weighted kappas than
quantile normalization, its FAR and FRR are smaller than those
of quantile normalization. This also demonstrates the potential of
using the proposed logistic regression model to improve the array
data normalization with increased miRNA numbers.

4 DISCUSSION
Normalization is an essential matter for discovery experiments using
microarray. It has a profound impact on accuracy, precision and
overfitting (Argyropoulos et al., 2006). The fundamental assumption
of most established normalization methods suitable for high-density
arrays is that relatively few genes will be dramatically up- or
downregulated compared with the total number genes, and the
overall distribution for each slide will have a similar pattern.
However, miRNA has broken this assumption because of its small
total number. Consequently, current miRNA microarray platforms
possibly do not include enough miRNAs with stable expression
(Davison et al., 2006).

In order to overcome this obstacle, specific controls have been
recommended for miRNA normalization. Careful selection of
appropriate controls is extremely critical since variation has been
observed for the most commonly used housekeeping markers in
mRNA analyses: for example, β-Actin and GAPDH (de Kok et al.,
2005). The ideal controls should be consistently stable and highly
abundant despite tissue types or treatments. Also, they should have
characteristics similar to miRNAs, including size, biogenesis and
stability. According to this criteria, mRNA and synthesized spike-in
controls are not perfectly suitable for the normalization purpose.
ncRNAs are the other class of small RNA molecules including
transfer RNA (tRNA), snRNA and small nucleolar RNA (snoRNA)
(Kiss, 2002). Their sizes range from 45 to 200 nt and their characters
are closer to miRNA. Some array platforms have adapted to utilize
ncRNAs as normalization controls included on slides, such as the
new version of Exiqon miRCURY LNA miRNAArray and Luminex
FlexMIR panels. Nevertheless, in one of our ongoing projects, we
found some ncRNAs used for normalization controls contained in
these arrays could be influenced by chemo drug treatments, such
as 5-FU, Cisplatin or Doxorubicin (data not shown). As a result,
we need to be aware of the stability of normalization controls
across a relatively wide variety of tissues, cell lines and conditions.
A number of normalization controls is thus recommended to be
included and their stability validation is suggested to be performed
before normalization.

Given the change of a relatively high portion of total miRNAs
under varied situations and the difficulty of finding appropriate
specific normalization controls, how could we efficiently take
advantage of the benefit brought by a high-dimensional microarray
platform for miRNA research? In order to address this question,
we attempted to introduce the personalized concept into miRNA
array normalization. Our assumption is that the expression pattern
of an entire miRNA population under certain conditions should
remain consistent within any applied discovery and validation
platforms, such as microarray and qRT-PCR. qRT-PCR is becoming
the gold standard for relative gene expression analysis and one
of the major validation methods after high-dimensional discovery
including miRNA research (Schmittgen et al., 2008). In this study,
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we estimated the overall expression pattern of the entire miRNA
profile using a panel of representative miRNAs through qRT-PCR
validation. The results were led to fitting a logistic regression
model which was used for array data normalization. The additional
20 normalized miRNAs were post-validated by qRT-PCR. After
comparison with other normalization methods, we found that the
new model improves the normalization of miRNA array-based
profiling analysis by lowering FAR and FRR.

Several concerns will surely come to the forefront. Will
implementation be cost-effective? How many miRNAs need to be
included to build such a model? In our study, no obvious increase
of cost was applicable because we took advantage of our on-
hand Taqman qRT-PCR miRNA assays. They have been continually
stocked for previous and ongoing projects for years. Each Taqman
assay can perform hundreds of reactions which leads the average
cost for an individual project relatively minimal. Core laboratory
and multi-lab collaboration can also practically reduce the cost
because the same panel could be applied repeatedly to different
projects involving miRNAarray. Compared with the expensive array
costs, especially in large-scale biomarker discovery using multiple
samples, the cost to perform qRT-PCR and accomplish critical
normalization will not be a huge burden. Also, the cost will surely be
decreased along with technology development. For example, SYBR
Green assays have been well developed for miRNA research with a
much lower cost. This study also showed a potential for developing
an affordable low cost assay for miRNA profiling data normalization
by using the proposed logistic regression model.

We have used 37 randomly selected miRNAs to generate such a
logistic regression model for miRNA array normalization purposes.
Due to the difference of individual projects, it is not realistic to
assume a certain number as a universal standard to fit a normalization
model. Optimization is strongly recommended. In our results (Table
3), we investigated the efficiency of models composed of a different
number of miRNAs. In our experimental model, the size could be
as low as 6. However, the small size will cause higher FAR, FRR
and standard errors.

Studies have confirmed that >30% of miRNAs exhibited
differential expression in varied conditions (Davison et al., 2006).
This percentage indicates the potential of a small number of
miRNA candidates to reflect the overall expression pattern. In our
study, 8 out of 37 miRNAs had no measurements. We recommend
choosing miRNAs with higher expression levels (higher than the
overall mean or median expression value) to build the logistic
regression model. Also, we purposely did not include any confirmed
miRNAs associated with our experimental model in this study.
However, logically, we believe that previous accomplishments or
confirmed markers could improve the efficiency of optimization.
Likely, it is executable to pick up a few interesting or known
miRNAs in the target experimental model to design a panel for
building the normalization model and further data mining. In this
study, the logistic regression model was built based on one-colored
array data. The application of the proposed model to two-colored
arrays will be investigated in our further studies. As mentioned
earlier, the current prevalent normalization methods for mRNA
analysis are not well adapted to miRNA profiling studies. We
are proposing a concept of personalized normalization in allusion
to miRNA analysis, ultimately pushing for the development of
more feasible and adaptive normalization methods for miRNA
research.
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