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BACKGROUND: Different technologies, such as quantita-
tive real-time PCR or microarrays, have been developed
to measure microRNA (miRNA) expression levels.
Quantification of miRNA transcripts implicates data nor-
malization using endogenous and exogenous reference
genes for data correction. However, there is no consensus
about an optimal normalization strategy. The choice of a
reference gene remains problematic and can have a serious
impact on the actual available transcript levels and, conse-
quently, on the biological interpretation of data.

CONTENT: In this review article we discuss the reliability
of the use of small RNAs, commonly reported in the
literature as miRNA expression normalizers, and com-
pare different strategies used for data normalization.

SUMMARY: A workflow strategy is proposed for normal-
ization of miRNA expression data in an attempt to pro-
vide a basis for the establishment of a global standard
procedure that will allow comparison across studies.
© 2015 American Association for Clinical Chemistry

MicroRNAs (miRNAs)5 are small noncoding RNA tran-
scripts of approximately 22 nucleotides in length that
exert an important regulatory role on cell activity at the
transcriptional level. miRNAs are initially transcribed as
immature pri-miRNAs, being processed in the cell nu-
cleus and cytoplasm by the RNAase III enzymes Drosha
and Dicer and loaded into Ago proteins to form the
RNA-induced silencing complex (RISC) (1 ). Mature
functional miRNAs loaded in the RISC complex interact
with complementary sequences usually located at the 3�

untranslated region (3�-UTR) of mRNAs present in the
cell cytoplasm, promoting mRNA cleavage or repressing
their translation (2 ). Ultimately, this regulates gene ex-
pression by decreasing the production of effector pro-
teins. miRNAs can repress multiple targets within the
same pathway, resulting in amplification of their biolog-
ical effects (3 ).

In physiological conditions, miRNAs regulate cell
differentiation, cell proliferation and survival, and me-
tabolism, among many other functions (2 ). Additionally,
disruption of their expression patterns implicates
miRNAs in disease onset and progression (4 ), such as
cancer (5 ), and their potential role as prognostic and
predictive biomarkers in patient management has been
described (6 ). Beyond the functions they exert in the cells
that produce them, miRNAs may also be secreted and
transferred to other cells, circulating in virtually all body
fluids, either in protein complexes or enclosed inside ex-
tracellular vesicles, such as microvesicles and exosomes
(7 ).

Because the collection of miRNAs produced by cells
reflects their physiological state, these noncoding RNAs
have been much explored as disease biomarkers (8). Differ-
ent methodologies have been applied to characterize quali-
tatively and quantitatively the expression patterns of
miRNAs associated with pathological vs normal conditions,
including quantitative real-time PCR (qPCR), microarray
screening, Northern blotting, ultrahigh-throughput
miRNA sequencing (e.g., small RNA-seq, next generation
sequencing), in situ hybridization with locked nucleic acids
probes, and hybridization in solution with tagged probes
(e.g., nCounter® nanoString technology), among many
others (9). To accurately determine the levels of analyzed
miRNAs, their expression data are usually normalized
relatively to endogenous and/or exogenous reference
genes. However, different studies use different normal-
ization strategies to report miRNA expression levels. This
leads to ambiguous data interpretation, misleading con-
clusions, and erroneous biological predicted effects, impair-
ing comparisons between studies; consequently, no one op-
timal normalization strategy seems to have reached
consensus status for the scientific community so far.

Technical Challenges

The outcomes of miRNA analysis depend on several as-
pects of the overall process, beginning with the nature of
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the sample, the way it is collected, preserved, and pro-
cessed, the technical method applied for miRNA detec-
tion, and the strategy followed for data normalization
and analysis (10 ).

The accurate comparison of miRNA expression be-
tween samples requires that equal amounts of total
miRNAs are used as input for the detection method ap-
plied. Usually, the determination of the quantity of sam-
ple input for miRNA detection techniques is based on
total RNA quantification, but the real proportion of
miRNAs may vary from sample to sample, especially if
they have a different origin. Additionally, the integrity of
miRNAs is rarely determined, with microfluidic capillary
electrophoresis being currently the best method to assess
miRNA quality, but even with results being compro-
mised by mRNA degradation in the samples (11 ).

miRNAs may be isolated by different methods from
cultured cells, fresh tissues, frozen and fixed tissues, or as
cell-free circulating RNAs from conditioned cell culture
media and body fluids, including, for instance, whole
blood, plasma, serum, urine, and cerebrospinal fluid (12–
16). The collection of fresh human samples requires their
preservation by different methods, such as coagulation
prevention, freezing, fixing, and paraffin embedding.
The preservation process induces molecular changes that
may lead to global miRNA instability or enrichment/
depletion of specific miRNAs in the samples (17 ). As an
example, Kim et al. demonstrated that the capacity to
detect endogenous and exogenous miRNAs in plasma
samples strongly depends on the method used to prevent
blood coagulation (18 ). Likewise, Farina et al. showed
that freeze and thawing cycles differently affected the
levels of specific miRNAs in serum samples (19 ).The
time selected for sample collection is also important
when analyzing circulating miRNAs, because their phys-
iological levels may vary according to the circadian
rhythm, meal ingestion, and overall lifestyle (for instance,
smoking and drug consumption) (20, 21 ). Another fac-
tor to consider when analyzing the levels of miRNAs in
pathological conditions is the variation of their levels ac-
cording to disease stage and progression (22, 23 ), as well
as medical interventions and treatment course (24, 25 ).

Currently, the study of circulating miRNAs strongly
focuses on RNA isolated from microvesicles and exo-
somes actively secreted by cells. For the particular case of
exosomes, different methods can be employed for their
isolation, most commonly, ultracentrifugation (using or
not a density gradient), filtration, size-exclusion chroma-
tography, and precipitation (using polymeric solutions or
beads with immunoaffinity to an exosomal protein
marker). Considering their working principle, the differ-
ent methods lead to an enrichment of specific vesicle
subpopulations that likely carry different cargo (21, 26 ).
Notably, large and dense complexes of proteins associ-
ated with other biomolecules, such as different types of

RNA, have been detected as coprecipitants in exosome
pellets isolated by ultracentrifugation. Consequently,
miRNA analysis of these samples does not reflect the real
intraexosomal content. Size-exclusion chromatography
has been proposed as a good isolation alternative to cir-
cumvent this issue (27 ). Immunoaffinity-based methods
have been widely used to isolate exosomes from body
fluids, targeting proteins described as disease-specific bio-
markers and carried on vesicle surfaces. This strategy may
bias the definition of specific circulating miRNAs as dis-
ease biomarkers compared to the relative miRNA expres-
sion in exosomes isolated in healthy conditions by a
method of diminished specificity (28 ). Conversely,
disease-specific miRNA biomarkers may be missed be-
cause of their absence in vesicles selected by the particular
protein biomarker chosen (29 ).

Ultimately, the global analysis of miRNA expres-
sion, especially for the confident discovery and validation
of disease biomarkers, strongly depends on the size of co-
horts/sets of samples analyzed. Very frequently, only small-
sized test populations are studied, leading to an erroneous or
biased misidentification of biomarkers. In a recently pub-
lished metaanalysis reviewing miRNA biomarker discovery
in nonneoplasic diseases, it was revealed that the majority of
the studies published rely on populations under 100 indi-
viduals (median size, 69 study participants) (30).

The methodology chosen for miRNA detection also
influences the outcomes of miRNA quantification. Cur-
rently, the most used methodologies are qPCR and hy-
bridization on microarray platforms, with the former be-
ing the gold standard for detection of specific sets of
miRNAs of interest and the later mostly applied for large-
scale profiling.

Measurement of miRNAs by qPCR is very specific
and sensitive, allowing the detection of very small quan-
tities of miRNAs, and relatively inexpensive, and com-
mercial ready-to-use kits are widely available. The most
common qPCR detection techniques are stem-loop–shaped
RT-primer Taqman assays (Applied Biosystems), assays us-
ing locked nucleic acid primers (Exiqon), and assays with
poly-A tailing primers (QIAGEN, Stratagene). With these
approaches, only a limited set of miRNAs can be tested in a
single reaction, and detection is greatly influenced by the
specificity of the primers designed (31).

Conversely, microarrays allow the probing of a large
set of miRNAs simultaneously, currently at much more
competitive costs, because several off-the-shelf platforms
are commercially available from companies such as Af-
fimetrix, Agilent, and Exiqon, among others. This tech-
nique requires an input of higher amounts of RNA, and
assay performance may sometimes be compromised by
hybridization conditions that are not optimal to the
whole probes in the test. Likewise, the design of the
probes to include in the platform may be troublesome,
because they have to be specific enough for the target
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miRNAs and, at the same time, share similarities in the
conditions required for hybridization (32 ).

Both approaches have associated advantages and
drawbacks, but one of the most striking pitfalls is the low
correlation between different techniques. In a compara-
tive study by Sato et al. (33 ), miRNAs in liver and pros-
tate human tissues were profiled using microarray plat-
forms from different companies and expression log-ratios
were ranked. Surprisingly, the median rank correlation
across platforms was only 0.55, and the highest correla-
tion found was 0.87. Interestingly, the correlation be-
tween microarray- and Taqman-based expression data
was higher, with a median correlation coefficient of 0.7,
and only 1 of the platforms with a correlation coefficient
lower than 0.5. The latter data support the common prac-
tice of using qPCR-based techniques as a confirmatory
method for the validation of microarray expression data.

In an attempt to minimize the effect imposed by the
factors previously described on miRNA expression levels,
an accurate data analysis should be performed, using ap-
propriate reference genes for external and internal varia-
tion correction (34 ).

Relative Data Normalization to Endogenous
Reference Genes

Quantification of miRNAs has come to the fore and pro-
duced a wealth of literature, particularly during the last 5
years (35 ). Here, we focus on the issues that may arise
with the data normalization in the gold-standard method
qPCR. There are 2 most commonly used methods to
analyze data from qPCR: absolute and relative quantifi-
cation. Absolute quantification determines the input
copy number, usually by relating the PCR signal to a
standard curve. Relative quantification relates the PCR
signal of the target transcript in a treatment group to that
of another sample such as an untreated control (36 ). For
the relative miRNA quantification, the PCR-derived cy-
cle threshold (Cq) of target miRNAs is compared with
that of a stably expressed endogenous miRNA from the
same sample. The difference between these values is the
�Cq value (37 ). This normalization approach aims at
removing differences due to sampling and quality of the
samples. The guidelines for QC and standardization of
qPCR imply the use of an optimal normalization method
(38 ); however, there are no universally accepted refer-
ence genes or so-called “housekeeping” transcripts for
miRNA data normalization. This lack of consensus has
resulted in various normalization strategies (39 ). Some
studies have even proposed the erroneous notion of com-
pletely abandoning an endogenous normalization (40–
44), and should of course be approached with some cau-
tion. In fact, it was reported that qPCR can be used
without endogenous controls to analyze miR-371-3 in
the serum of patients with testicular cancer, if the tech-

nical procedure is performed under controlled condi-
tions. This study compared the Cq and �Cq values of
miR-371a-3p, miR-372, and miR-373-3p by real-time
PCR with and without 18S rRNA (ribosomal RNA) as a
reference gene for data normalization. The miRNA tran-
script levels were measured in 25 testicular germ cell tu-
mor patients, 4 nontesticular germ cell tumor patients,
and 17 age-matched male controls. A highly positive cor-
relation between Cq and �Cq values was found in all
samples. The highest correlation was found for miR-
371a-3p (R2, 0.956) (45 ). Despite this positive correla-
tion between Cq and �Cq values detected in all serum
samples (45 ), relative data quantification is absolutely
indispensable to substantiate robust miRNA data (46 ).
In this particular study (45 ), the detected significant cor-
relation was likely related to the similar (good) quality
and handling of the serum samples, but there is no guarantee
that this will always be the case. There is no evidence to
support the notion that good sample quality will always be
obtained, because total RNA can be partly degraded and
bias the results. Therefore, miRNA quantifications without
an internal control should be considered critically.

Fortunately, a majority of studies have carried out a
relative quantification that compares the expression levels
of target genes with the expression of an endogenous
reference gene. Before starting an experiment, the choice
of an endogenous reference gene is a critical step to avoid
misinterpreted data and to identify true changes in
miRNA expression levels. Usually, researchers select their
endogenous reference gene for miRNA quantification ac-
cording to reports in the literature or based on a distin-
guishable low SD in miRNA microarrays. Considering
the most recent and significant reports (see Table 1 in the
Data Supplement that accompanies the online version of
this review at http://www.clinchem.org/content/vol61/
issue11), numerous reference genes, such as small nucle-
ar/nucleolar RNAs, have been commonly used for
miRNA quantification (47–50). These small RNA mol-
ecules share similar properties, such as RNA stability and
size, and are abundantly expressed. Although these tran-
scripts display constant expression in single analyses,
their expression levels can change under different exper-
imental conditions and may be affected by specific types
of disease (49 ). Therefore, proposed normalizers first
should be established across various sample types, and the
combination of several normalizers might be more ap-
propriate than a single universal normalizer (51 ).

RNU6 and Other RNUs as Normalizers

The small noncoding RNA RNU6 genes RNU6A and
RNU6B are the reference genes most frequently used as
normalizers (see online Supplemental Table 1). How-
ever, RNU6 is not an miRNA, and, consequently, does
not reflect the biochemical character of miRNA mole-
cules in terms of their transcription, processing, and
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tissue-specific expression patterns (52, 53 ). In addition,
the efficiency of their extraction, reverse transcription,
and PCR amplification may differ from that of miRNAs.
It has been argued that it is best to normalize miRNAs
with reference genes belonging to the same RNA class,
thus to miRNAs (39 ). In this regard, Gee et al. showed
that the use of small nuclear RNAs (snRNAs) as reference
genes can introduce bias when quantifying miRNA ex-
pression, and that this bias can be quite important in
cancer prognosis (53 ).

Gee et al. (53 ) measured RNU6B, RNU44,
RNU48, and RNU43 for data normalization in qPCR
analyzing breast cancer and head and neck squamous cell
carcinoma patients. The expression of these snRNAs was
as variable as the expression of the target miRNAs miR-
21, miR-210, and miR-10b, and data normalization to
these recommended reference snRNAs introduced bias
in the associations between miRNA and pathology or
outcome (53 ). Using microarray-based serum miRNA
profiling followed by qPCR, Xiang et al. screened and
compared the expression levels of reference RNAs in pa-
tients with different tumors and healthy controls. They
found large fluctuations in RNU6 expression and a rela-
tively stable expression of miR-16. The difference of �Cq
values of RNU6 between the highest and lowest expres-
sion level was 3.29, and that of miR-16 was 1.23. Xiang
et al. also subjected the serum samples to different freeze–
thaw cycles and showed that RNU6 expression gradually
decreased after 1, 2, and 4 cycles of freezing and thawing,
whereas the expression of miR-16 and miR-24 remained
relatively stable (54 ).

Lamba et al. compared the stability of RNU6 and
RNU6B in hepatic tissue and found that both snRNAs
were not suitable for the use as endogenous controls for
normalizing miRNA data in this tumor type. They used
Taqman-based qPCR to quantify the expression levels of
22 miRNAs along with RNU6 and RNU6B in 50 hu-
man liver samples (55 ). The software programs Norm-
Finder (56 ) and GeNormplus both identified RNU6 to
be among the least stable of all candidate snRNAs ana-
lyzed, and RNU6B was also not among the top genes in
stability. In their analyses, miR-152 and miR-23b were
identified to be the 2 most stable candidates and to be
eligible as endogenous controls for data normalization.

Benz et al. analyzed RNU6B levels in the serum
samples of healthy volunteers, intensive care unit pa-
tients, and patients with liver fibrosis. They demon-
strated that serum RNU6B levels displayed a high vari-
ability between the cohorts and, consequently, were
dysregulated in a disease-specific manner. Most impor-
tantly, the expression levels were significantly upregu-
lated in the serum of patients with critical illness and
sepsis compared with controls and were correlated with
established markers of inflammation. In contrast, in pa-
tients with liver fibrosis, RNU6B levels were significantly

downregulated (52 ). Furthermore, Ratert et al. also
showed that, notably, RNU6B is unsuitable for miRNA
normalization. On the basis of miRNA microarray data,
a total of 16 miRNAs were identified as putative refer-
ence genes. After validation by qPCR, RNU6B, RNU48,
miR-101, miR-125a-5p, miR-148b, miR-151-5p, miR-
181a, miR-181b, miR-29c, miR-324-3p, miR-424,
miR-874, and Z30 were evaluated by the programs
geNorm (57 ), NormFinder, and BestKeeper. These al-
gorithms recommended the combinations of 4 (miR-
101, miR-125a-5p, miR-148b, and miR-151-5p) and 3
(miR-148b, miR-181b, and miR-874) reference
miRNAs for data normalization (58 ).

In miRNA expression studies on renal cell carci-
noma, RNU6B was also unsuitable as a normalizer. Val-
idation experiments were performed on 4 miRNAs
(miR-28, miR-103, miR-106a, and miR-151) together
with RNU6B, RNU44, and RNU48. miR-28, miR-103,
miR-106a, and RNU48 were proven to be the most sta-
bly expressed genes, but RNU6B was differentially ex-
pressed. If only a single reference gene can be used,
miR-28 was recommended as the normalizer, although
the combinations of miR-28 and miR-103 or of miR-28,
miR-103, and miR-106a were preferred (59 ).

Torres et al. used qPCR to investigate the expression
of 12 candidate snRNAs (RNU6, RNU44, RNU48,
RNU75, RNU54, RNU49, RNU6B, RNU38B,
RNU18A, miR-16, miR-26b, and miR-92a) in tissue
samples of 30 endometrioid endometrial carcinoma pa-
tients and 15 normal endometrium samples. The stabil-
ity of candidate endogenous controls was also evaluated
using the algorithm programs and an equivalency test.
The results were then validated using a larger number of
samples. RNU48, RNU75, and RNU44 were identified
as the most stably and equivalently expressed snRNAs
between malignant and normal tissues. Both the Norm-
Finder and geNorm programs indicated that these 3
snRNAs were optimal for qPCR data normalization in
endometrioid endometrial tissues. The authors suggested
that the average values of these snRNAs could be used as
a reliable endogenous control in studies on endometrioid
endometrial cancer (60 ).

In a study on Parkinson disease, RNU24 ranked at the
top of the list of reference genes, followed by Z30. In con-
trast, miR-103a-3p was ranked as the worst reference gene,
so that in combination with other reference genes this
miRNA led to biased results. It is important to underline
that miR-103a-3p alone or in combination with the other
reference genes reversed the direction of the expression levels
of the target miRNAs miR-29a-3p and miR-30b-5p. Also,
RNU6B was not considered to be a reliable reference gene
for Parkinson disease blood samples, because the efficiency,
the r2, and the stability values were too low (47).

These findings suggest that RNU6 may be unsuit-
able as an endogenous reference gene in the research of
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miRNA quantification. In contrast, the et al. recom-
mended RNU6 as reference gene for the relative quanti-
fication of miRNA expression levels in pleural effusion.
Following miRNA microarray, the expression levels of
candidate reference miRNAs, together with RNU6B,
RNU44, and RNU48, were validated in 46 benign pleu-
ral effusion samples and 45 lung adenocarcinoma–asso-
ciated malignant pleural effusion samples by qPCR, and
the results were verified using the NormFinder and Best-
Keeper algorithms. RNU6B and miR-192 were identi-
fied as single reference genes, and the combination of
these genes was preferred for the relative quantification of
miRNA expression levels in pleural effusion (61 ).

miR-16 as Normalizer

miR-16 is also frequently used as a normalizer, be-
cause it is highly expressed and relatively invariant across
various samples (62 ). To normalize qPCR data, McDer-
mott et al. demonstrated that the combined use of
miR-16 together with miR-425 generated more reliable
results than the use of either one of these miRNAs alone,
or the use of RNU6. Following miRNA profiling of ap-
proximately 380 miRNAs, qPCR was performed in 40
breast cancer patients and 20 healthy women. The anal-
ysis by geNorm and NormFinder algorithms showed that
miR-16 and miR-425 were the most stable combination,
achieving the lowest V-value of 0.185 (63 ).

Song et al. used qPCR to analyze the expression
levels of miR-16 together with let-7a, miR-93, miR-103,
miR-192, miR-451, and RNU6B in the serum samples
of 40 gastric cancer patients and 20 healthy volunteers.
The geNorm, NormFinder, and Bestkeeper algorithms
were used to select the most stably expressed reference
gene from the 7 candidates. The algorithms revealed
miR-16 and miR-93 to be the most stably expressed ref-
erence genes, with stability values of 1.778 and 2.213,
respectively, for serum miRNA quantification across all
the patients and healthy controls. The effects of different
normalization strategies were also compared. When the
data were normalized to the serum volume, there were no
significant differences of miRNA levels between patients
and controls. However, when the data were normalized
to miR-16 or miR-93, or the combination of miR-93 and
miR-16, significant differences were detected. These re-
sults demonstrated that the use of reference genes for
qPCR data normalization has a great effect on the study
outcome, and that miR-16 and miR-93 can be recom-
mended as suitable reference genes for serum miRNA
quantification in gastric cancer patients (50 ).

In contrast, Schaefer et al. reported that data nor-
malization to miR-16 may lead to biased results using
tissue and normal adjacent tissue sample pairs from men
with untreated prostate carcinoma collected after radical
prostatectomy. In this study (64 ), the expression levels of

4 putative reference genes (miR-16, miR-130b, RNU6-
2, and SNORD7) were examined with regard to their use
as normalizers. Candidate miR-130b and RNU6-2
showed no significantly different expression levels be-
tween the matched malignant and nonmalignant tissue
samples, whereas miR-16 was significantly downregu-
lated in malignant tissue. GeNorm and NormFinder al-
gorithms predicted miR-130b and the geometric mean of
miR-130b and RNU6-2 as the most stable reference
genes (64 ). To date, the expression of miR-16 has also
been described to be deregulated in different diseases by
several other studies (65–70). For example, in osteoclast
differentiation, the expression of miR-16 is increased,
and miR-16 was characterized as a regulator of osteolytic
bone metastasis (66 ).

Other miRNAs as Normalizers

Using geNorm and NormFinder, Peltier and
Latham found that miR-191 was the most consistently
expressed miRNA across different human tissues, fol-
lowed by miR-93, miR-106a, miR-17-5p, and miR-25.
In contrast, RNU6 and snRNA5S were the least stable.
Indeed, the difference in stability between miR-191 and
snRNA5S was an SD of nearly �1 Cq or a difference of
�2-fold. Normalization to total RNA mass was also eval-
uated, but this reference approach ranked behind miR-
191 and miR-93 in stability (71 ).

Hu et al. designated miR-1228 as a promising stable
endogenous control for quantifying circulating miRNAs
in cancer patients. In this report, circulating miRNAs
were quantified in controls (healthy individuals and
those with chronic hepatitis B and cirrhosis) and cancer
patients (hepatocellular, colorectal, lung, esophageal,
gastric, renal, prostate, and breast cancer). GeNorm and
NormFinder algorithms as well as CV were used to select
the most stable endogenous control, whereas ingenuity
pathway analysis (IPA) was adopted to explore the signal-
ing pathways involved. miR-1228, with CV � 5.4% and
minimum M and S values, presented as the most stable
endogenous control across 8 cancer types and 3 controls.
IPA showed miR-1228 to be involved extensively in
metabolism-related signal pathways and organ morphol-
ogy, implying that miR-1228 functions as a housekeep-
ing gene. Additionally, functional network analysis
found that miR-1228 was associated with hematological
system development, explaining its steady expression in
the blood (72 ).

On the basis of their use of a TaqMan low-density
array and the NormFinder algorithm, Zhu et al. recom-
mended the combination of miR-26a, miR-221, and
miR-22* as the most stable set of reference genes for the
evaluation of circulating miRNA in hepatitis B virus–
infected patients and healthy individuals (73 ). To deter-
mine the levels of candidate reference genes (RNU1-4,
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RNU6-2, SNORD43, SNORD44, SNORD48,
SNORA74A, miR-let-7a-1, and miR-106a) for urologi-
cal malignancies, Sanders et al. used qPCR to analyze (in
Caenorhabditis elegans) cel-miR-39–spiked serum of
prostate cancer patients, bladder cancer patients, renal
cell carcinoma patients, and controls. Recovery of cel-
miR-39 (mean, 11.6%; range, 1%–56%) was similar in
controls and cancer patients. SNORD44 and
SNORD74A levels were around the detection limit of
the assay. Using the NormFinder and geNorm algo-
rithms, SNORD43 was the most stable reference gene. A
combination of 2 genes (SNORD43 and RNU1-4)
increased the stability somewhat, indicating that
SNORD43 may be a suitable reference gene for the
quantification of circulating miRNA in uro-oncological
patients (74 ). For uterine cervical tissues, Shen et al. sug-
gested that miR-23a and miR-191 are the optimal refer-
ence miRNAs. Following a microarray assay, the stability
of candidate reference genes (miR-26a, miR-23a, miR-
200c, let-7a, and miR-1979) was assessed by qPCR in a
cohort of 108 clinical uterine cervical samples. miR-23a
was identified as the most reliable reference gene, fol-
lowed by miR-191 (75 ). To screen suitable reference
genes for hepatocellular carcinoma, gastric carcinoma,
hepatic cirrhosis, and hepatitis B, Tang et al. used
GeNorm, Normfinder, BestKeeper, and comparative
�Cq algorithms integrated in RefFinder and measured
plasma concentrations of RNU6, let-7a, miR-21, miR-
106a, miR-155, miR-219, miR-221, and miR-16 in
these patients and healthy volunteers. RefFinder revealed
miR-106a and miR-21 as the most stably expressed ref-
erence genes, with comprehensive stability values of
1.189 and 1.861, respectively, whereas RNU6 was the
most unstable miRNA (76 ). However, this study should
be considered critically, because the upregulation of
miR-21 was reported in a variety of human malignancies.
In fact, it is one of the first discovered oncomiRs and
most investigated in the context of cancer (5 ). Following
miSeq sequencing and qPCR, Wang et al. selected 5
genes (miR-193a-5p, miR-16-5p, RNU6, miR-191-5p,
and let-7-d-3p) for stability analysis using geNorm and
NormFinder software. These algorithms identified miR-
193a-5p and miR-16-5p as the most stably expressed
reference genes. One-way ANOVA indicated that no sig-
nificant differences were present in the serum levels
among patients with non–muscle-invasive bladder can-
cer, patients with muscle-invasive bladder cancer, and
healthy controls. The combined use of miR-193a-5p and
miR-16-5p demonstrated that normalization of miRNA
data may produce reliable and accurate results for the
detection of the significant upregulation of serum miR-
148b-3p in bladder cancer (77 ). To find out the control
gene for exosomal miRNA normalization, Li et al. eval-
uated the expression stability of 11 reference genes in
circulating exosomes and found that the combination of

miR-221, miR-191, let-7a, miR-181a, and miR-26a can
be an optimal gene reference set for normalizing the ex-
pression of liver-specific miRNAs. This combination en-
hanced the robustness of the relative quantification anal-
yses (78 ).

Upshot of Relative Data Normalization

Taken together, these findings summarize the en-
deavors of developing an optimal endogenous miRNA
control to normalize miRNA expression levels. The sug-
gested normalizers for target miRNAs are tissue and spe-
cies specific. So far, the studies also demonstrate that no
consensus exists regarding the normalization to a stan-
dard reference gene in various diseases, making the
miRNA results incomparable. On the one hand, some
studies have evaluated and suggested convenient
miRNAs, snRNA, or rRNAs as ideal candidate reference
genes for data normalization in different diseases using
specific algorithms, whereas on the other hand, other
studies have shown their deregulation, even for the same
disease. In this regard, normalization to a standard refer-
ence is still in its infancy. Furthermore, the selection of a
normalizer should always follow validation screening
tests on a subset of the samples under analyses.

However, these studies also demonstrate that the use
of more than 1 reference gene increases the accuracy of
quantification compared to the use of a single reference
gene. More than 10 years ago, Vandesompele et al. eval-
uated 10 housekeeping genes from different abundance
and functional classes in various human tissues and dem-
onstrated that the conventional use of a single gene for
normalization leads to relatively large errors in a substan-
tial proportion of samples tested. The geometric mean of
multiple carefully selected housekeeping genes was validated
as an accurate normalization factor (57). Chugh and Ditt-
mer described the potential pitfalls in microRNA profiling
and showed that the best way to approach the analysis of
miRNA expression data is via global mean normalization of
a set of reference genes that may be tissue specific. This
method takes a minimum of 3 stable housekeeping genes
and takes the geometric mean to provide a reliable normal-
ization factor that can control for outliers and differences in
abundance between genes (39).

Relative Data Normalization to Exogenous
Reference Genes

To ensure that miRNA quantification is not affected by
the technical variability that may be introduced at differ-
ent analysis steps, synthetic, nonhuman spike-in
miRNAs are frequently used to monitor RNA purifica-
tion and reverse transcription efficiencies. The C. elegans
miRNA cel-miR-39 is almost exclusively used for nor-
malization to an exogenous reference gene (79–81), but
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cel-miR-54 (44 ), and the synthetic miRNAs Quanto
EC1 and Quanto EC2 (82 ), as well as the simian virus
gene SV40 (83 ), also have been used. Because of the lack
of established reference genes, some studies have carried
out miRNA quantification only with data normalization
to these artificial reference miRNAs. These exogenous
miRNAs are usually added to the samples before reverse
transcription of RNA to avoid differences in template
quality and warrant efficiency of the reverse transcription
reaction. This spike-in method can eliminate some devi-
ations of the experimental process and make the results
more reliable, but this method does not correct for devi-
ations in sampling and quality of samples. A major draw-
back of using spike-in controls is that only the handling
of experiments is considered, but not the quality of tis-
sues, body fluids, or extracellular vesicles samples. How-
ever, age, body fluids collection, preparation, or storing
of tissue or fluid samples may result in changes of miRNA
levels, which may be caused by cell lysis or miRNA degra-
dation. For example, samples with low total RNA quality
showed the highest concentrations of miRNA (5, 84).
Therefore, the data of this approach should be interpreted
with caution. However, when normalization is based on a
combination of an endogenous and an exogenous control
miRNA, differences in miRNA recovery and cDNA synthe-
sis between samples may be compensated (85).

Absolute Data Normalization

Some studies have used absolute data normalizations and
calculated the miRNA expression using standard curves
developed by synthetic miRNAs and melting curves (40–
43). Following miRNA expression array, Yau et al. quan-
tified 2 target miRNAs (miR-221 and miR-18a) in 40
pairs of colorectal carcinoma tissues and 595 stool sam-
ples. Their miRNA quantification was based on standard
curves and normalized per nanogram of the total input
RNA. Derived from standard curves plotted from known
amounts of synthetic miR-221 and miR-18a, a technical
detection limit of 2 copies for miR-221 resulted in a Cq
value of 42, and a technical detection limit of 5 copies for
miR-18a resulted in a Cq value of 47. All Cq values of
�42 for miR-221, and �47 for miR-18a were assigned a
value of 0. Samples with no amplification of miR-221 or
miR-18a were also assigned a value of 0 (41 ). However,
this study should be considered critically, because on the
basis of MIQE (Minimum Information for publication
of Quantitative real-time PCR Experiments) guidelines
for qPCR, Cq values in the order of 40 and more are
unreliable (86 ). Liu et al. examined the expression pat-
terns of serum let-7 in 214 gastric cancer patients, 222
atrophic gastritis patients, and 202 controls. The concen-
tration (copy number) of let-7 was calculated using a
standard curve. Melting curve analysis was performed to
validate the specificity of the expected PCR products

(42 ). Wang et al. normalized 5 serum miRNAs (miR-
487a, miR-502, miR-208, miR-215, and miR-29b) to
the serum volumes, because RNU6 and 5S rRNA were
degraded in the serum samples and because of the lack of
a consensus housekeeping miRNA for qPCR. Addition-
ally, Wang et al. assessed the detection limits of the qPCR
assay and the dynamic range and calculated the absolute
concentration of target miRNAs on the basis of a calibra-
tion curve developed by synthetic miRNAs with known
concentration (43 ).

Although these studies show interesting results, the
applied absolute normalization does not consider the in-
fluence of RNA quality on the performance of qPCR.
This normalization method is not optimal for an exact
quantification of real miRNA amounts and reliable only
for samples with a good RNA quality.

Ideal Data Normalization Models

The lack of consensus on reference gene selection for
miRNA expression data normalization has led to the
spread of publications screening for suitable normalizers
for samples of defined origins and/or implicated in dif-
ferent pathological conditions. New studies performing
miRNA detection by qPCR may greatly benefit from this
knowledge, and thus a strategic experimental workflow is
proposed (Fig. 1). Before qPCR assay performance, re-
searchers are advised to review the literature using sam-
ples of the same origin and physiological state, processed
as similarly as possible, to find candidate reference genes.
Nevertheless, the suitability of these genes for the set of
samples under analysis should always then be validated in
a sample subset. If the candidate reference genes are sta-
ble, qPCR can be performed and data normalized using
their expression levels. If not, the specific samples have to
be screened for more suitable reference genes. Ideally,
good reference genes should have low SDs of expression
levels across samples and similar mean and median ex-
pression values and be little affected by storage conditions
and sample processing, with a high efficiency of extrac-
tion. In these cases, the addition of exogenous xenogeneic
or synthetic miRNAs to the samples may be beneficial,
and their expression levels may be considered simultane-
ously with endogenous appropriate normalizers for data
correction. Considering the advantages and disadvantages
of the different methods for miRNA qPCR data normaliza-
tion, it is evident that the standard approach of relative data
normalization with endogenous and exogenous reference
genes benefits from a complementary data absolute normal-
ization. Although it should not be used alone, absolute data
normalization allows data correction for limitations intrinsic
to the qPCR methodology and gives more insights about
the overall status of miRNA expression.

Alternatively, qPCR data for specific miRNA ex-
pression may be normalized following strategies that take
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into account the total miRNA expression in the samples.
Very frequently, qPCR analysis of specific miRNAs fol-
lows global analysis of total miRNAs expressed in a sam-
ple by another technique, as is the case for microarray
expression data validation. In this case, information
about the whole miRNA content of the sample is avail-
able that can be used for global normalization. Mestdagh
et al. proposed the use of the mean expression value of
whole miRNAs in a sample to normalize miRNA qPCR
data (34 ). In this study, a high-throughput qPCR assay
that allows the detection of 430 different human
miRNAs and 18 small RNA controls was performed to
determine global miRNA expression levels in samples of
normal and tumor tissue. The mean miRNA expression
value was then calculated considering all the transcripts
with a maximal Cq threshold of 35 cycles. A comparative
analysis of the stability of mean expression value and
common reference genes performed using geNorm
clearly showed the adequate application of this strategy

for normalization, performing better than genes such as
RNU48 and miR-191. Ideally, this strategy should be
more widespread for qPCR data validation; nevertheless
it implies that a large number of genes are always profiled,
which may not be cost-effective. To circumvent this is-
sue, the authors propose the selection of reference genes
with expression levels similar to values of the global mean
expression level previously reported, using their geomet-
ric mean for qPCR data normalization. In addition, re-
searchers should bear in mind that, overall, qPCR data
normalization may greatly benefit from sample preserva-
tion and stability, and thus adequate protocols for sample
processing should be standardized at least for samples of
the same origin in the same laboratory.

Conclusion

Normalizing to a reference gene can eliminate differences
due to sampling and quality of RNA and can identify real

Fig. 1. Workflow for miRNA qPCR data normalization.
Candidate reference genes may be selected from the literature and validated in a subset of the samples under analysis. If these are found to
be not appropriate, samples should be profiled to find adequate endogenous reference genes. Alternatively, exogenous miRNAs may be
spiked-in into the samples. Also, mathematical indicators calculated from previous miRNA global expression profiles of the same or similar
samples may be used for normalization.
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changes in miRNA expression levels. Therefore, careful
validation of reference genes for miRNAs is of crucial
importance to obtain accurate miRNA expression data.
Reliability of results reported in the literature, using the
wrong reference gene, or even performing no data nor-
malization, is questionable. It should be emphasized that
the applicability of reference genes in some studies does
not automatically apply to other studies and that the use
of a single reference gene is not sufficient to obtain reli-
able miRNA data. We propose the best data normaliza-
tion strategy to be one that employs a combination of
endogenous and exogenous control miRNAs. Routine
use of such an approach will allow differences in both the
preanalytical handling of samples and the analytical
miRNA recovery to be considered.
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