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Our understanding of common human diseases and how best to treat 
them is hampered by the complexity of the human system in which they 
are manifested. Unlike simple Mendelian disorders, in which highly 
expressive, highly penetrant mutations make it possible to identify the 
causal genes within families in which traits associated with the disor-
ders segregate1, common human diseases originate from a more com-
plex interplay between constellations of changes in DNA (both rare 
and common variations) and a broad range of factors such as diet, age, 
gender and exposure to environmental toxins.

These complex arrays of interacting factors are thought to affect entire 
network states that in turn increase or decrease the risk of disease or affect 
disease severity. In the context of common human diseases, the disease 
states can be considered emergent properties of molecular networks2, as 
opposed to the core biological processes associated with a disease being 
driven by responses to changes in a small number of genes. Integrating 
large-scale, high-dimensional molecular and physiological data holds 
promise not only for defining the molecular networks that directly respond 
to genetic and environmental perturbations that associate with disease but 
also for causally associating such networks with the physiological states 
associated with disease. Given what must be considered a deluge of data 
of many different types flooding life sciences and biomedical research 
today, including genome-wide single-nucleotide polymorphism (SNP) 
genotyping data, whole-genome transcription data, next-generation DNA 
sequencing data, RNA sequencing data, chromatin immunoprecipitation 
(ChIP) sequencing data and image data, it is now time to begin address-
ing how these large-scale, high-dimensional data sets can be integrated 
to better understand the molecular networks underlying physiological 
states associated with disease. Here, I review the progress made over the 
past few years to integrate DNA variation, molecular profiling and clini-
cal data collected in populations in order to construct causal probabilistic 
networks of disease, providing a more comprehensive view of disease than 
can be achieved by examining the different data dimensions on their own. 
Particular attention is paid to describing how the predictive networks 
produced from this type of integrative modelling can help link molecular 
states to physiological ones, providing an alternative path for understand-
ing how molecular states drive complex disease processes.

GWAS provide insights into human diseases
Roughly three billion nucleotides make up the human genome, so the 
number of nucleotide changes that can affect the activities of genes is 

effectively infinite with respect to our ability to determine the effects 
of combinations of such changes experimentally. Therefore, exploiting 
naturally occurring DNA variation in human populations is among the 
most attractive approaches to inferring the constellation of genes that 
affect disease risk. For most diseases, changes in DNA that correlate 
with disease can be inferred as tagging or directly representing causal 
components of disease. Therefore, DNA variation directly elucidates 
disease aetiology and is extremely useful (Fig. 1a). Genome-wide asso-
ciation studies (GWAS) are now well proven to uncover genetic loci that 
affect disease risk or progression3.

The emergence of technologies capable of characterizing DNA varia-
tion systematically over the entire genome and in whole populations has 
revolutionized our ability to apply GWAS approaches to many human 
diseases, with more than 200 loci now identified and highly replicated 
for Crohn’s disease4, type 2 diabetes5, serum lipid levels6,7, prostrate can-
cer8,9, age-related macular degeneration10,11, obesity12 and more than 
50 other human diseases3. By comparing the frequencies of genetic vari-
ants between individuals with and without disease, or by directly testing 
for correlations between a quantitative disease trait and genotypes at a 
given locus, GWAS can lead directly to the causal variants of disease 
or to variants that are in strong linkage disequilibrium with variants of 
disease. Therefore, the power of approaches such as GWAS lies in their 
ability to identify the genetic causes of disease, which can be used to 
predict disease risk and to elucidate signalling pathways associated with 
disease, information that is of use in drug discovery.

Integrative genomics and disease networks
GWAS have uncovered many genetic loci that associate with human 
diseases, but two fundamental limitations have hampered our ability 
to translate these results into clinically useful predictors of disease and 
drug targets. First, the genetic loci associated with disease generally 
explain very little of the disease risk. The odds of having a risk genotype 
at a particular disease locus given that you have the disease, divided 
by the odds of having a risk genotype given that you do not have the 
disease, are typically less than 1.5 (ref. 3). Second, the SNP–trait asso-
ciations alone do not necessarily lead directly to the identification of 
the causal gene(s), much less elucidate the context in which the causal 
gene(s) operates3,13,14. Understanding the biological context in which a 
given causal gene for disease operates is a necessary step in identifying 
the best drug targets15,16.

Molecular networks as sensors and drivers 

of common human diseases
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The molecular biology revolution led to an intense focus on the study of interactions between DNA, RNA and 
protein biosynthesis in order to develop a more comprehensive understanding of the cell. One consequence of 
this focus was a reduced attention to whole-system physiology, making it difficult to link molecular biology to 
clinical medicine. Equipped with the tools emerging from the genomics revolution, we are now in a position to link 
molecular states to physiological ones through the reverse engineering of molecular networks that sense DNA 
and environmental perturbations and, as a result, drive variations in physiological states associated with disease.
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Interestingly, in the span of just a few years, the realization that tractable 
drug targets and clinically useful biomarkers of disease are not immedi-
ately apparent from GWAS data has, for some, reduced enthusiasm for the 
GWAS approach17–19. However, given that variations in DNA do not on 
their own directly impact on physiological states associated with disease, 
there is the potential to enhance our understanding of GWAS data by 
layering in a hierarchy of phenotypes that define the molecular and physi-
ological states associated with disease13,14,20–22. Because variations in DNA 
more proximally (relative to disease states) induce changes in molecular 
states that in turn drive variations in physiological states associated with 
disease, incorporating such data can allow the identification of causal 
genes and the broader biological context in which they operate. There-
fore, elucidating changes in molecular states that more directly respond 
to changes in DNA and that in turn influence disease has the potential to 
fill in the gaps left by GWAS.

In fact, the advances made in mapping DNA loci for diseases have 
occurred simultaneously with the mapping of DNA loci for molecular 
traits such as transcript abundances13,14,20,22–24. Identifying the RNAs that 
mediate the flow of information from DNA to disease is of particular 
interest in this context, given that, because it is transcribed directly from 
a DNA template, RNA is the most proximal non-DNA species of all 
molecular entities in the cell. In studies that seek to map genetic loci 
that affect RNA levels, SNP genotypes are tested for association with 
tens of thousands of RNA traits scored simultaneously in population 
samples. A number of such studies have demonstrated that the amount 
of variation in RNA levels explained by a given genetic locus can often 
be greater than 50% (refs 13, 14, 22 and 24). In addition, family-based 
studies of the genetics of RNA levels in multiple tissues have estimated 
that a majority of RNA traits on average have a genetic variance com-
ponent of 30% (ref. 13). The mapping of genetic loci for molecular traits 
is not constrained only to RNA levels. Any molecular species that can 
be reasonably well measured (for example protein or metabolite levels) 
is amenable to genetic mapping and can complement genetic mapping 
for RNA traits25. Mapping studies involving RNA traits are not without 
significant analysis issues. The large number of RNA traits and markers 
that can be tested demands that significance levels for association be 
rigorously adjusted to control for false-discovery rates14.

Molecular traits controlled by genetic loci associated with disease can 
be treated as intermediate phenotypes of disease and thus elucidate the 
molecular networks underlying disease. This can aid in the interpreta-
tion of GWAS data by identifying genes whose RNA levels associate with 
genetic loci that also associate with disease6,13,14,20,26,27. Furthermore, these 
data can be treated more formally to infer causal relationships between 
molecular traits and disease states2,21,28,29, a process that has been shown 
to aid in the identification of genes or specific isoforms of genes cor-
responding to loci identified in the GWAS14,20,30 (Fig. 1b). One of the 
central issues related to the use of RNA traits to enhance identification of 
genes in genomic regions associated with disease is assessing whether a 
given locus is jointly associated with disease and RNA levels, or whether 
two closely linked loci control the RNA levels and disease independ-
ently14,21. Formal statistical procedures that examine the joint probabili-
ties for the genotype, RNA and disease data can be applied to establish 
whether RNA levels and disease are related in either an independent 
relationship or a causal or reactive relationship2,21,28,29.

The introduction of molecular traits can enhance the interpretation 
of GWAS results by placing them in a broader biological context that 
may support the identification of disease-susceptibility genes and more 
generally elucidate networks (Box 1) that define the biological processes 
associated with disease14. One of the more intriguing examples of this 
approach was the identification of three candidate susceptibility genes 
(SORT1, CELSR2 and PSRC1) for cardiovascular disease and lipid lev-
els2,7, where the disease-associated and lipid-associated SNPs were also 
significantly associated with the liver expression of the three candidate 
genes, which were physically located near the disease-associated SNP. 
These genes were also supported as causal for low-density-lipoprotein 
cholesterol levels in a previously described experimental mouse cross2. 
Furthermore, all three genes were found to be connected in liver gene 

networks that were constructed from mouse and human liver samples and 
in which the constituent genes were enriched for in a previously described 
macrophage-enriched metabolic network associated with a number of 
processes related to immune function and inflammation2,13,14.

Disease networks respond to disease loci
Identifying genetic loci that associate with disease and intermediate 
molecular phenotypes that respond more proximally to these loci and 
in turn cause disease are excellent first steps to uncovering the drivers of 
disease. However, the view of disease becoming clear from the large-scale 
genomic studies is that common forms of disease are emergent properties 
of networks whose states are affected by a complex interaction of genetic 
and environmental factors. To understand the behaviour of any one gene 
in the context of human disease, individual genes must be understood in 
the context of molecular networks that define the disease states. In fact, 
several studies have now shown that for single diseases or traits such as 
height, tens or even hundreds of genes may be involved but may not be 
randomly distributed with respect to biological function.

For example, sequencing of DNA from tumour samples found scores of 
genes affected by rare variations that influence cancer risk and progression. 
The genes affected were shown to be significantly more likely to belong to 
pathways known to be involved in tumorigenesis or tumour progression 
than was the case for the set of all genes that were resequenced as part of this 
study31,32. In a separate study, my research group identified a macrophage-
enriched metabolic network (MEMN) that in mice was strongly indicated 
to be causal for a number of metabolic-disease traits2. The same network 
was not only found to be associated with metabolic traits and conserved 
in human populations but also to be enriched for DNA variations near 

Figure 1 | Hierarchy of causal relationships. a, Classic genetic association 
approaches seek to identify variations in DNA that correlate with disease 
state or with quantitative traits associated with disease. The attraction 
of this approach is the identification of the genetic causes of disease. 
b, Changes in DNA on their own do not lead to disease but, instead, lead 
to changes in molecular traits that go on to affect disease risk. By layering 
in molecular phenotypes as intermediate phenotypes, causal relationships 
between genes and disease can be established directly. c, Disease gene 
networks sense constellations of genetic and environmental perturbations. 
Therefore, a more realistic model is one in which constellations of genetic 
and environmental perturbations affect molecular states of networks that in 
turn affect disease risk.
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these genes that are associated with obesity, suggesting that hundreds or 
thousands of genes may subtly affect obesity risk13. Constructing networks 
that underlie core biological processes associated with disease makes it pos-
sible to identify the functional units that respond to genetic perturbations 
and then in turn affect disease risk (Fig. 1c). In this way, any given gene 
can be studied in the context of many different networks to learn whether 
one or more of the networks in which a given gene operates influences 
physiological states associated with the disease. Such mappings not only 
allow the identification of causal relationships among genes and between 
genes and more complex traits such as disease2,21,29 but also more generally 
allow the construction of predictive gene networks2,33.

Before this can be achieved, however, we must integrate the diverse 
data necessary to construct the gene networks. There have been a number 
of recent advances in the construction of networks capable of predicting 
complex system behaviour. Examining the action of many genes simul-
taneously in populations segregating common disease traits has led to 
the identification of whole gene networks that both define disease at the 
molecular level and drive the onset and progression of disease2,13,14,31–35. 
The construction of these networks allows the identification of the func-
tional units of the system underlying physiological states2,29,34,36,37.

Networks generally provide a convenient framework for exploring the 
context within which single genes operate (Box 1). Networks are simply 
graphical models that comprise nodes and edges and are convenient for 
visualizing complex mathematical models that describe how variables of a 
system associate with one another in different contexts of interest. For gene 
networks associated with biological systems, the nodes in the network typ-
ically represent genes, gene products or other important molecular enti-
ties, and an edge between any two nodes indicates a relationship between 
the corresponding genes, gene products or other molecular entities. For 
example, an edge between two genes may indicate that the correspond-
ing expression traits are correlated33,38, that the corresponding proteins 
interact39 or that changes in the activity of one gene lead to changes in the 
activity of the other21. Interaction, or association, networks, which have 
recently become widely used in the biological community, are formed by 
considering only pairwise relationships between genes, including protein 
interactions40 and co-expression relationships37,41.

Interaction networks allow the identification of subnetworks (coher-
ent gene modules) corresponding to the functional units of a living sys-
tem2,29,36,37,42,43. Increasing evidence suggests that these functional units are 
directly linked to physiological states, defining in humans the molecular 
states that lead to physiological states associated with disease. Genetic 
perturbations that associate with disease have been shown to act through 
these functional units by altering the corresponding network state. The 
networks therefore can serve as an organizing framework for causal per-
turbations that lead to disease. That is, networks sense variations in the 

genome, in the methylome and in the environment more generally, given 
that these different types of variation affect the function of the proteins or 
the expression levels of the genes or proteins constituting these networks, 
thus altering their states. In this way, the network more maximally cap-
tures, or senses, these different sources of variation and, as a result, induces 
changes in physiological states associated with disease (Fig. 1c).

Although there is now an extensive literature on the construction and 
application of interaction networks to elucidate the complexity of dis-
ease, these methods are typically applied to gene expression data alone 
and therefore do not strictly reflect causal relationships among gene 
expression traits or between expression traits and disease. Probabilistic 
causal networks represent an alternative approach capable of integrat-
ing multiple types of data and inferring from these data whether two 
or more genes are causally connected to each other or to disease traits. 
Bayesian network-reconstruction methods are one of the more com-
mon approaches of this sort. They provide an elegant way of incor-
porating diverse data pertaining to causal relationships, such as DNA 
variation, gene expression, protein interaction, DNA–protein binding, 
and proteomic and, more recently, metabolomic data. Recent work has 
demonstrated that by considering these types of data simultaneously, it 
is possible to construct networks that are able to predict future states of 
the representative system33,44. The construction of networks in which the 
relationships between genes can be understood from the standpoint of 
causal control is one of the ultimate aims in life sciences and biomedi-
cal research, as an understanding of predictive gene networks can lead 
directly to drug targets and biomarkers of disease15,16,45.

The MEMN is an example of a causal network constructed by inte-
grating different data types. The MEMN was identified from liver and 
adipose gene expression data generated in mouse and human popu-
lations segregating metabolic-disease phenotypes. From the resultant 
tissue gene networks, the MEMN was identified as strongly conserved 
between tissues, between sexes and between species, and was strongly 
associated with metabolic traits related to obesity, diabetes and heart 
disease2,13. It was also observed to respond to variations in DNA that 
are associated with disease traits13. A statistical procedure21 was applied 
to infer whether the MEMN was responding to the DNA changes and 
causing variations in the metabolic traits as a result or whether it was 
responding to changes in the metabolic traits induced by the DNA 
changes. The MEMN was strongly indicated to be causal for all of the 
obesity, diabetes and heart-disease traits scored in an experimental 
mouse population.

Biological processes represented in the MEMN supported the idea 
of macrophages as a key driver of disease pathogenesis, consistent with 
recent evidence that chronic inflammation is a key feature of obesity2,46. 
Importantly, the mouse MEMN was highly conserved in humans, in 

Cells comprise many tens of thousands of 

proteins, metabolites, RNAs and DNAs, all 

interacting in complex ways. In turn, complex 

biological systems comprise many types of cell 

operating within and between the many types 

of tissue that make up different organ systems, 

all of which interact in complex ways to give 

rise to a vast array of phenotypes that manifest 

themselves in living systems. Modelling the 

extent of such relationships between molecular 

entities, between cells, and between organ 

systems is a daunting task. Networks are a 

convenient framework in which to represent 

the relationships among these different 

variables. In the context of biological systems, 

a network can be viewed as a graphical model 

that represents relationships among DNAs, 

RNAs, proteins, metabolites and higher-order 

phenotypes such as disease state. In this way, 

networks provide a way to visualize extremely 

large-scale, complex relationships among 

molecular and higher-order phenotypes in any 

given context. In this Review, I am interested 

in networks that represent relationships 

among molecular entities in a living system, 

as determined empirically in populations of 

individuals.

In this context, biological networks comprise 

nodes, which represent molecular entities 

that are observed to vary in the population 

under study (for example DNA variations, 

RNA levels, protein states or metabolite 

levels). Edges between the nodes represent 

relationships between the molecular entities, 

and these edges can either be directed, 

indicating a cause–effect relationship, or 

undirected, indicating an association or 

interaction. For example, a DNA node in the 

network representing a given locus that varies 

in a population of interest may be connected 

to a transcript-abundance trait, indicating 

that changes at the particular DNA locus 

induce changes in the levels of the transcript. 

The potentially millions of such relationships 

represented in a network define the overall 

connectivity structure, or topology, of the 

network. Any realistic network topology will 

necessarily be complicated and nonlinear from 

the standpoint of the more classic biochemical 

pathway diagrams presented in text books 

and pathway databases such as the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 

pathway database54. The more classic pathway 

view represents molecular processes on an 

individual level, whereas networks represent 

global (population-level) metrics describing 

variations between individuals in a population 

of interest; these variations in turn define the 

coherent biological processes in the tissue or 

cells associated with the network.

Box 1 | Gene networks

220

NATURE|Vol 461|10 September 2009INSIGHT REVIEW

218-223 Insights - Schadt NS.indd   220218-223 Insights - Schadt NS.indd   220 2/9/09   17:54:572/9/09   17:54:57

© 2009 Macmillan Publishers Limited. All rights reserved



a

RNA

Metabolites
Heart disease

Heart disease

Physiology

Physiology

Network

Proteins

b

c
RNA

MetabolitesProteins
Heart disease

Physiology

whom it was also indicated to be causal for metabolic traits. A number 
of genes in the MEMN were predicted to be causal for metabolic-disease 
traits. This has now been experimentally verified, and the genes have 
been shown to be involved in complex feedback control, with many of 
them indicated and confirmed to be causal for each other2,14,28,29.

Linking molecular and physiological states
The identification of the MEMN as a key driver of metabolic disease 
highlights several important features of the network approach to under-
standing disease that have implications for drug discovery: first, the 
network analyses revealed hundreds of disease-causing genes acting 
together in coherent networks; second, within a given network sup-
ported as being causal for disease, perturbing individual genes supported 
as being causal for disease affected the state of the network; and, third, 
DNA and other sources of variation in one species can be used to con-
struct disease networks that are relevant in a second species and that act 
as sensors for many sources of variation (for example genetic, epigenetic 
and environmental sources) and in turn modulate physio logical traits 
associated with disease. These features taken together suggest that net-
works such as the MEMN underlie or define the physiological states 
associated with disease. The data further suggest that highly efficacious 
treatments of diseases such as obesity might not be achieved by target-
ing single genes, at least not without taking into account the role of an 
individual gene in the network15,16.

Core subnetworks associated with disease provide a path directly 
linking molecular biology to physiology, and it is this link that may 
ultimately lead to a more significant clinical impact (Fig. 2). Networks 
have now been modelled both within and between multiple tissues that 
are relevant to disease. The identification of subnetworks interacting 
between islet, adipose, liver, muscle and brain tissues has highlighted the 
importance of using a network framework directly to model physiologi-
cal states associated with diabetes34. One of the most recent studies42 in 
modelling cross-tissue networks highlighted coherent subnetworks that 
were not part of any of the single-tissue networks but, instead, specific to 
cross-tissue interactions, showing that modelling molecular interactions 
operating between tissues is critical if we hope to understand physiologi-
cal states associated with disease.

Whereas classic molecular biology provided very narrow views con-
necting molecular entities to disease, today’s technologies allow the gen-
eration of comprehensive snapshots of living systems, which in turn allows 
a more systems-level view of the molecular states underlying physiological 

states associated with disease. In single experiments, we can now gener-
ate terabytes of genotype, sequence, gene expression, physiological and 
ima ging data. The degree to which any one of these different data types 
informs our view of disease may vary, but these data types provide com-
plementary views that are useful individually and potentially exceptionally 
valuable when considered collectively.

Disease-associated networks such as the MEMN comprise hundreds of 
genes interacting in complex ways that collectively associate with physio-
logical states such as fat mass, insulin levels and atherosclerotic-lesion size. 
Such networks may be indicated to cause variations in disease-associated 
traits and can also respond to (or sense) genetic and environmental vari-
ations that influence disease risk. For example, the MEMN was demon-
strated to respond to a wide range of DNA variations in genes distributed 
throughout the genome and also responded to environmental perturba-
tions such as changes in diet. For mice placed on a high-fat diet, more than 
40% of the RNA traits that changed relative to those of mice on a normal, 
chow diet were concentrated in the MEMN (the probability of this overlap 
occurring by chance was computed to be <10−200).

Perspectives
The disease-associated molecular networks that we can construct today 
are necessarily based on grossly incomplete sets of data. Even given 
the ability to assay DNA and RNA variation in whole populations in a 
comprehensive manner, the information is not complete, because we 
are far from completely characterizing rare variation, DNA variation 
other than SNP and copy number, variation in non-coding RNA levels 
and variation in the different isoforms of genes in any sample, much 
less in entire populations. Beyond DNA and RNA, it is not possible with 
existing technologies to measure all protein-associated traits or all the 
interactions between proteins and DNA/RNA, metabolite levels and 
other molecular entities important to the functioning of living systems. 
Furthermore, the types of high-dimensional data we are able to gener-
ate routinely today in populations represent only a snapshot at a single 
time point, which may allow the identification of the functional units 
of the system under study and how these units relate to one another but 
does not allow a complete understanding of how the functional units 
are put together or the mechanistic underpinnings of the complex set of 
functions carried out by individual cells, by entire organs and by whole 
systems comprising multiple organs.

Technological advances, however, allow the generation of increas-
ingly higher dimensional data, so we continue to progress towards a 

Figure 2 | Linking molecular biology 
to physiology through molecular 
networks. a, Before the molecular biology 
revolution, disease was studied primarily 
in the context of physiology. b, As a result 
of the molecular biology revolution, 
physiology has played a less prominent 
role in the study of the molecular bases 
of disease, given the reductionist push to 
associate molecular changes in a given 
gene (affecting protein levels, activity 
or function) directly with changes in 
disease states. c, The complexity of 
molecular biology — given the ability to 
monitor DNA variation, RNA variation, 
metabolite variation and protein variation 
in populations on a comprehensive 
scale — has driven a systems view of 
disease, in which networks of interacting 
molecular entities are constructed to 
define physiological states of the system 
associated with disease. In this way, the 
molecular networks allow a direct link 
between molecular biology and clinical 
medicine by connecting molecular biology 
to physiology.
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