
Understanding the genetic basis of complex traits has been 
an ongoing quest for many researchers. Technological 
advances in data generation from multiple levels of bio-
logical systems — including DNA sequence data1, RNA 
expression levels2,3, methylation patterns4, other epige-
netic markers5, proteomics6 and metabolomics7 (FIG. 1) — 
have driven the field of translational bioinformatics for the 
past decade, producing ever-increasing amounts of data 
as researchers strive to develop complementary analysis 
tools. In addition to generating these data from whole-
blood or specific tissue samples, the ability to generate  
these data from single cells is rapidly advancing8.

Various analytical approaches have been developed 
to identify the genetic variation that underlies com-
plex traits. For example, DNA sequence variation can 
be identified through linkage analysis in family-based 
data9 and through association studies in family‑10 and 
population-based data11. In addition, the association 
between phenotypic outcome and variation in other 
high-throughput omic measurements — such as gene 
expression (using microarrays and RNA sequencing 
(RNA-seq)), epigenetic variation (by methylation arrays, 
methylation sequencing or chromatin immunoprecipi-
tation followed by sequencing (ChIP–seq)) and protein 
variation (assayed in either metabolomic or proteomic 

studies in various ways) — is now routinely explored. 
Historically, each type of data has been considered 
independently to look for relationships with biological 
processes and, using these methods, we have assembled 
some of the pieces of the puzzle of complex-trait genetic 
architecture and basic biological pathways. However, 
much of the genetic aetiology of complex traits and bio-
logical networks remains unexplained, which could be 
partly due to the focus on restrictive single-data-type 
study designs.

Owing to our limited understanding of many 
complex traits from this single-data-type approach,  
meta-dimensional analysis and multi-staged analysis (that 
is, systems genomics approaches) have been used increas-
ingly. As reviewed previously12–16, a systems genomics 
approach can achieve a more thorough and informative 
interrogation of genotype–phenotype associations than 
an analysis that uses only a single data type. Combining 
multiple data types can compensate for missing or unre-
liable information in any single data type, and multiple 
sources of evidence pointing to the same gene or path-
way are less likely to lead to false positives. Importantly, 
the complete biological model is only likely to be dis-
covered if the different levels of genetic, genomic and 
proteomic regulation are considered in an analysis.
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Complex traits
Characteristics that arise from 
interactions among multiple 
molecular factors, with the 
potential influence of 
environmental and behavioural 
factors. Complex traits do not 
conform to the inheritance 
pattern of Mendelian traits.
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Abstract | Recent technological advances have expanded the breadth of available omic 
data, from whole-genome sequencing data, to extensive transcriptomic, methylomic and 
metabolomic data. A key goal of analyses of these data is the identification of effective 
models that predict phenotypic traits and outcomes, elucidating important biomarkers 
and generating important insights into the genetic underpinnings of the heritability of 
complex traits. There is still a need for powerful and advanced analysis strategies to fully 
harness the utility of these comprehensive high-throughput data, identifying true 
associations and reducing the number of false associations. In this Review, we explore the 
emerging approaches for data integration — including meta-dimensional and 
multi-staged analyses — which aim to deepen our understanding of the role of genetics 
and genomics in complex outcomes. With the use and further development of these 
approaches, an improved understanding of the relationship between genomic variation 
and human phenotypes may be revealed.
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Meta-dimensional analysis
An approach whereby all 
scales of data are combined 
simultaneously to produce 
complex models defined  
as multiple variables from 
multiple scales of data.

Multi-staged analysis
A stepwise or hierarchical 
analysis method that reduces 
the search space through 
different stages of analysis.

Systems genomics
An analysis approach that 
models the complex inter- and 
intra-individual variations  
of traits and diseases using 
data from next-generation 
omic data.

Data integration
The incorporation of 
multi-omic information in  
a meaningful way to provide a 
more comprehensive analysis 
of a biological point of interest.

In this Review, we describe the principles of meta-
dimensional analysis and multi-staged analysis, and 
provide an overview of some of the approaches that 
are used to predict a given quantitative or categorical 
outcome, the tools available to implement these analy-
ses, and the various strengths and weaknesses of these 
strategies. In addition, we describe the analytical chal-
lenges that emerge with data sets of this magnitude, and 
provide our perspective on how such systems genomic 
analyses might develop in the future.

Why integrate data?
Data integration can have numerous meanings; however, 
in this Review, we use it to mean the process by which 
different types of omic data are combined as predictor 
variables to allow more thorough and comprehensive 
modelling of complex traits or phenotypes — which are 
likely to be the result of an elaborate interplay among 
biological variation at various levels of regulation — 
through the identification of more informative models. 
Data integration methods are now emerging that aim 
to bridge the gap between our ability to generate vast 
amounts of data and our understanding of biology, thus 

reflecting the complexity within biological systems. 
The primary motivation behind integrated data analy-
sis is to identify key genomic factors, and importantly 
their interactions, that explain or predict disease risk or 
other biological outcomes. The success in understand-
ing the genetic and genomic architecture of complex 
phenotypes has been modest, and this could be due to 
our limited exploration of the interactions among the 
genome, transcriptome, metabolome and so on. Data 
integration may provide improved power to identify 
the important genomic factors and their interactions 
(BOX 1). In addition, modelling the complexity of, and 
the interactions between, variation in DNA, gene 
expression, methylation, metabolites and proteins 
may improve our understanding of the mechanism 
or causal relationships of complex-trait architecture. 
There are two main approaches to data integration: 
multi-staged analysis, which involves integrating 
information using a stepwise or hierarchical analysis 
approach; and meta-dimensional analysis, which refers 
to the concept of integrating multiple different data 
types to build a multivariate model associated with a 
given outcome16–18.
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Figure 1 | Biological systems multi-omics from the genome, epigenome, 
transcriptome, proteome and metabolome to the phenome.  
Heterogeneous genomic data exist within and between levels, for example, 
single-nucleotide polymorphism (SNP), copy number variation (CNV), loss 
of heterozygosity (LOH) and genomic rearrangement, such as translocation, 
at the genome level; DNA methylation, histone modification, chromatin 
accessibility, transcription factor (TF) binding and micro RNA (miRNA) at the 

epigenome level; gene expression and alternative splicing at the 
transcriptome level; protein expression and post-translational modification 
at the proteome level; and metabolite profiling at the metabolome level. 
Arrows indicate the flow of genetic information from the genome level to 
the metabolome level and, ultimately, to the phenome level. The red crosses 
indicate inactivation of transcription or translation. CSF, cerebrospinal  
fluid; Me, methylation; TFBS, transcription factor-binding site.
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Box 1 | The reality of complex outcomes and the importance of data integration

Assessing variation only of a single omic data type can miss complex models that require variation across multiple  
levels of biological regulation. Data integration approaches can provide a key to making sense of greater complexity.
Here, we present a hypothetical example, using sporadic breast cancer as a complex trait, of the complexity underlying 
disease that should be encompassed when analysing data, and illustrate the utility of meta-dimensional analysis. Many 
candidate gene studies85,86, genome-wide association studies87–90 and pathway analyses91,92 have been pursued, yet only a 
relatively small proportion of the estimated heritability of sporadic breast cancer has been explained. Consider the 
following example involving three well-studied pathways for breast cancer: oestrogen metabolism, DNA damage repair 
and the cell cycle (see the figure; points of variation are indicated by a shape, and the numbers correspond to the 
description in the text).

It is now established that oestrogen can cause DNA damage if it is not properly metabolized93. Two genes, cytochrome 
P450 1A1 (CYP1A1) and CYP1B1, participate in the first step of oestrogen breakdown. The metabolite created by CYP1B1 
(4‑OHE

2
 catechol oestrogen) creates a more carcinogenic form of oestrogen by‑product than that metabolized by 

CYP1A1. In our model, copy number variation (CNV) in CYP1A1 (label 1 in the figure) reduces activity, and 
single-nucleotide polymorphisms (SNPs) in CYP1B1 (label 2) increase activity, resulting in higher levels of carcinogenic 
by‑products (see the figure, part a). Additionally, multiple rare variants in caffeic acid 3‑O‑methyltransferase (COMT; 
label 3), glutathione S‑transferase μ1 (GSTM1) and glutathione S-transferase θ1 (GSTT1; label 4) reduce the metabolism of 
carcinogenic by‑products, resulting in a higher level of DNA damage (see the figure, part a). Even so, these variations may 
not increase the risk of cancer if the DNA damage repair pathway can offset the increase in carcinogenic metabolites. 
However, hypermethylation of X‑ray repair cross-complementing 1 (XRCC1; label 5) and variation in the gene expression 
of XRCC3 (label 6) result in reduced transcription levels, and this repair pathway may no longer be able to adequately 
keep DNA repair at necessary levels (see the figure, part b). Finally, dysregulated protein expression of genes in the cell 
cycle pathway — for example, in cyclin-dependent kinase 1 (CDK1; label 7) — may result in a rate of cell replication that 
is higher than average and therefore DNA damage (see the figure, part c). The end result can lead to an abundance of 
damaged cells (that is, breast cancer cells). In our hypothetical model, all of the variation mentioned above is required to 
pass the threshold into cancer development. Therefore, only an analytical approach that integrates data from the 
genome, transcriptome and proteome would identify the full model.

This purely hypothetical example is used to illustrate the following point: an analysis that assesses variation of only a 
single omic data type can miss complex models that require variation across multiple levels of biological regulation. 
Disease aetiology is probably the result of the complex interplay between multiple biological pathways; thus, when 
exploring only one piece of data (that is, only SNPs), we cannot understand the full complexity of biological systems and 
outcomes. We believe meta-dimensional analysis is critical for fully realizing the scope of trait architecture. 
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Quality control
Various techniques used to 
remove noise and confounding 
factors from the data.

Data integration will allow us to explore new sci-
entific questions, although assembling all of these data 
types together into a more complete biological story is 
immensely challenging. In particular, diversity in the 
size of data sets, patterns of missing data and noise across 
the different data types, and correspondence and corre-
lation between measurements from different technolo-
gies can create substantial challenges. Many methods to 
integrate data have been developed, all with strengths 
and weaknesses, and no single analysis approach will be 
optimal for all studies. Therefore, a comprehensive and 
expanded analysis ‘toolbox’ will be an important factor 
in the discovery and interpretation of the complexities 
of biology.

Challenges with individual data sets
There are unique challenges for individual data types,  
and it is important to consider these before implement-
ing multi-staged or meta-dimensional analyses; these 
include data quality, data scale or dimensionality, and 
potential confounding of the data (see below). If these 
issues are not dealt with for each individual data type, 
then they could cause problems when the data types  
are integrated. Evaluating each data type carefully before 
integration is important to avoid downstream problems 
with the analysis. Additionally, rapid advances in data 
generation require substantial increases in compu-
tational power and storage capabilities of computing 
systems19. Numerous approaches and strategies, from 
open-source to commercial packages, are being explored 
to store and track these data20–22.

Quality assurance and quality control. In the past, for 
more limited collections of data, data quality could 
be assessed at the level of individual data points. For 
example, genotyping using low-throughput assays 
such as TaqMan would be evaluated by the laboratory 
through assessing the genotype clusters of homozygous 
and heterozygous samples for each single-nucleotide 
polymorphism (SNP) genotyped to determine whether 
the SNP was of high quality and whether there are any 
samples that did not cluster well with the rest of the 
data set. However, with the large-scale nature of high-
throughput data, examining data individually is not 
feasible, and researchers often rely on summary statis-
tics and broad overviews of the data. For example, sev-
eral quality control pipelines have been established and 
implemented for genome-wide SNP data, such as the 
Electronic Medical Records and Genomics (eMERGE) 
and Gene Environment Association Studies (GENEVA) 
networks23–25. Similarly, DNA sequencing26, RNA-seq27 
and genome-wide methylation profiling28 approaches 
have specific and critical quality control steps that must 
be implemented before analysis. These include looking 
for quality of the individual genomic variables, sample 
integrity and distributional evaluations of the genomic 
variables or samples, with respect to variables in a clini-
cal or phenotypic data set. These evaluations, which 
need to be performed for SNP or DNA sequence data 
separately from RNA-seq data or metabolomic data, will 
ensure that high-quality data are integrated. The phrase 

‘garbage in, garbage out’ comes to mind when deciding 
how rigorously to perform quality control checks before 
data integration. To ensure high-quality results, the goal 
is to start with high-quality data.

Data reduction. Data reduction can be used to limit 
the number of variables evaluated in a single data set, 
but it can also be used as an initial step for performing 
analyses across multiple data types. For example, when 
considering data with a vast number of independent 
variables and a substantially smaller number of samples, 
statistical power can be very limited29. Several analyti-
cal strategies, such as cross-validation and permutation 
testing30, can be implemented to address this concern, 
although investigators usually attempt to perform some 
form of data reduction before their association, corre-
lation or modelling analysis. Reducing the amount of 
data through some type of filtering strategy (see below) 
facilitates data integration analyses on a smaller, more 
refined subset of the data. This can lead to more efficient 
computations and can potentially reduce the multiple-
hypothesis testing burden. Furthermore, when exploring 
millions of measurements within a single data set, espe-
cially for complex models that include interactions, some 
level of data reduction is often necessary for analysis  
of single data types, as well as for integrative analyses 
across multiple data types. For example, if exploring 
models with more than one variable (such as models of 
SNP–SNP interactions or models incorporating multiple 
gene expression variables for outcome prediction), the 
full dimensionality of the data often cannot be modelled 
owing to computation time, memory and sample size 
considerations. Consider an example in which the data 
set includes 5 million SNPs. Calculating statistics for 
combinations of SNPs in an exhaustive manner leads to 
a combinatorial increase in models and their respective 
computation times. If we construct all possible pairwise 
models (by choosing 2 of the 5 million variables at a time 
and constructing all possible 2‑variable models and then 
repeating with different variables until all combinations 
have been assessed (referred to as ‘5 million choose 2’)), 
we have 1.25 × 1013 pairwise models to be evaluated; this 
number rises dramatically as the number of variables 
in the model increases. For example, calculating all of 
the statistical models that include 3 variables results 
in 2.09 × 1019 models to test. At a computation rate of 
1 million models per second, it would take more than 
3,400 hours to perform all of the 2-variable models in 
this example, and more than 5.7 × 109 hours to per-
form all of the 3-variable models. Even with large GPU 
(graphics processing unit) clusters, which are consider-
ably faster than traditional computing processors, these 
computation times are reaching the limits of practicality.

Data reduction through filtering and data min-
ing can be either extrinsic (that is, using information 
external to the data set itself ) or intrinsic (that is, 
using the data set and some analytical technique for 
filtering). Extrinsic approaches use prior knowledge 
that is accessible in the public domain, such as from 
Biofilter31, whereas intrinsic approaches use meth-
ods such as ReliefF32,33, chi-square statistics, principal 
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Factor analysis
A statistical method used to 
describe variability among 
observed, correlated variables 
in terms of a smaller number of 
unobserved (latent) variables.

Multi-omics data
Multiple types of genome-scale 
data sets that emerged from 
high-throughput technologies, 
including genome sequencing 
data (genomics), genome-wide 
RNA-sequencing data 
(transcriptomics), methylation 
and histone modification data 
(epigenomics), and mass 
spectrometry protein data 
(proteomics).

Population stratification
A situation in which different 
subpopulations exist within  
a data set owing to different 
allele frequencies because of 
underlying genetic ancestry 
that leads to different strata 
being present in the data set. 
This can lead to spurious 
associations if not adjusted  
for appropriately.

component analysis (PCA)30,34, factor analysis30 and 
genetic algorithms35. An example of intrinsic filtering 
for SNPs would be to use linkage disequilibrium (LD) 
patterns to reduce the number of SNPs, thus focusing on 
a smaller number of variables. An example of extrinsic 
filtering would be to filter a gene expression data set only 
for gene expression from genes known to have a relation-
ship to the immune system when investigating an auto-
immune trait. A limitation of extrinsic filtering is that we 
only ‘know what we know’, and extrinsic data reduction 
is therefore limited by the knowledge of the field at the 
time that information is used to guide data reduction. 
However, intrinsic filtering might remove biologically 
important features. In some analyses, a combination of 
intrinsic and extrinsic filtering can be performed. For 
example, with 5 million SNPs, a researcher may perform 
a chi-square test of association for each SNP and keep 
only those that are significant based on a chosen P value 
threshold, and may also select all biologically relevant 
variants based on a Biofilter annotation. 

The nature of the chosen method for data reduction 
will drive the hypothesis that can be tested. For example, 
there are two primary molecular variability hypotheses 
that might explain a resulting complex trait (FIG. 2). The 
dominant paradigm has been that variation at the DNA 
level will lead to changes in gene expression, leading to 
changes in protein expression and finally a change in 
phenotype — a fundamentally linear assumption of dis-
ease aetiology (Hypothesis A). If Hypothesis A is con-
sidered, then stratifying the data by type or scale and 
performing initial analyses before moving on to a step 
of further data integration is the most powerful, easily 
implemented and interpretable approach. For example, 
this would involve first reducing the amount of SNP data 
to include only those SNPs associated with a particular 
outcome, then limiting the amount of proteomic data 
to only those proteomic variables associated with the 
outcome, before analysing the SNP and proteomic data 
together. Hypothesis B is the alternative possibility, in 
which multiple levels of molecular variation contribute 
to disease risk in a nonlinear, interactive and complex 
way. If Hypothesis B is considered, then stratifying by 
data type for data reduction and subsequently perform-
ing analyses would inhibit the ability to detect the true 
model; thus, an alternative data reduction approach that 
combines the multi-omics data sets prior to data reduction 
would be more appropriate. For example, data from copy 
number variation, methylation and micro RNA (miRNA) 
could be combined and then reduced via ReliefF32; the 
resultant filtered data set could then be analysed for  
association with a particular outcome or phenotype.

Confounding. Confounding is another challenge with 
data integration (as with some other genomic and pro-
teomic analyses) that can lead to spurious associations 
and interpretations of findings. Confounding occurs 
when an independent variable is associated both with 
another independent variable and with the dependent 
variable; it can occur because of genetic, environmental, 
demographic or other technical factors. For example, 
population stratification is a type of confounding that can 

occur in genetic association studies36. Several methods 
have been developed to address population stratifica-
tion, including mixed-model approaches37 and PCA38. 
Surrogate variable analysis has been introduced as a 
strategy to accurately capture the relationship between 
variation in molecular variables (such as gene expres-
sion) and variation in other variables of interest, and to 
overcome the potential issues with heterogeneity and 
confounding39. Evidence of confounding needs to be 
addressed prior to any comprehensive data integration 
analyses.

An overview of data integration
Data integration methods can be broadly categorized 
into two types of approaches. In multi-staged analysis,  
models are constructed using only two different scales 
at a time, in a stepwise, linear or hierarchical manner. By 
scale, we refer to the numerical and categorical features 
of the data, for example, SNP variables, and gene expres-
sion variables that have either continuous values for the 
level of expression or a categorical variable indicating 
overexpressed or underexpressed genes. This approach 
reflects Hypothesis A of FIG. 2. Meta-dimensional analy-
sis, or the fusion of scales, is an approach in which all 
scales of data are combined simultaneously to iden-
tify complex, meta-dimensional models with multi-
ple variables from different data types. This approach 
reflects Hypothesis B of FIG. 2. There are several types 
of analysis and software tools that can be used to imple-
ment both multi-staged analysis and meta-dimensional  
analysis (TABLE 1).
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Figure 2 | Alternative hypothesis of complex-trait 
aetiology.  Hypothesis A (grey arrow) is the theory that 
variation is hierarchical, such that variation in DNA leads  
to variation in RNA and so on in a linear manner. 
Hypothesis B (black arrow) is the idea that it is the 
combination of variation across all possible omic levels in 
concert that leads to phenotype.
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Data integration: multi-staged analysis
Multi-staged analysis, as its name suggests, aims to 
divide data analysis into multiple steps, and signals are 
enriched with each step of the analysis. The main objec-
tive of the multi-staged approach is to divide the analysis 
into multiple steps to find associations first between the 
different data types, then subsequently between the data 
types and the trait or phenotype of interest. Examples of 
multi-staged analyses are shown in FIG. 3 and described 
below.

Genomic variation analysis approaches. The most com-
monly used genomic variation integration technique so 
far has been a three-stage or triangle method16. In the 
triangle method, the following steps are taken.
1.	 SNPs are associated with the phenotype and filtered 

based on a genome-wide significance threshold.
2.	 SNPs deemed significant from step 1 are then tested 

for association with another level of omic data. For 
example, one option is to look for the association of 
SNPs with gene expression levels. These SNPs are 
called expression quantitative trait loci (eQTLs). 
Alternatively, methylation QTLs (mQTLs; which 
are SNPs associated with DNA methylation levels),  
metabolite QTLs (which are SNPs associated  
with metabolite levels) and protein QTLs (pQTLs; 
which are SNPs associated with protein levels or 
other molecular traits such as long non-coding RNA 
and miRNA) could be used.

3.	 Omic data used in step 2 are then tested for correlation  
with the phenotype of interest.

Different methods of analysis can be used to imple-
ment this triangle approach, including linear or logis-
tic regression (depending on a continuous or a binary 
dependent variable, respectively). The rationale of this 
approach is based on Hypothesis A of FIG. 2, in which 

genetic variations are the foundation of all other molecu-
lar variations. The triangle approach has been used, for 
example, in studies of chemotherapeutic drug response 
in HapMap cell lines, in which significant eQTLs were 
tested for correlation with the drug response40–42. The 
difficulty of triangle-based methods comes when a rela-
tively arbitrary threshold, generally a P value, is used to 
identify the significant associations for further analyses. 
As the P value threshold also needs to be adjusted for 
the number of tests being carried out to combat multiple 
testing problems, there is likely to be a large number of 
false-negative SNPs, eQTLs, mQTLs and pQTLs being 
filtered out. This approach is often used to find SNPs 
associated with both a gene expression trait or a meth-
ylation level and the phenotype of interest to focus on 
functional SNPs.

Some researchers have begun to develop causal infer-
ence association approaches. For example, Schadt et al. 
have introduced a multistep approach to identify key 
drivers of complex traits that exploit the naturally occur-
ring DNA variation observed in populations43. DNA var-
iation is tested for association with gene expression, and 
gene expression traits are then ordered relative to one 
another. Analyses then determine whether DNA variants 
that lead to variation in relative transcript abundances 
are supported statistically as an independent, causa-
tive or reactive function43 using maximum likelihood 
approaches. These causal approaches43,44 allow the dis-
section of the genotype-to-phenotype process in a clear, 
linear manner. As long as Hypothesis A of FIG. 2 is being 
tested, these approaches are fairly powerful.

Allele-specific expression approaches. Another 
approach that links genomic variations to transcript 
levels is called allele-specific expression (ASE). In dip-
loid organisms, one of the two alleles is preferentially 
expressed in some genes45. ASE variants are associated 

Table 1 | Categorization of data analysis methods

Approach Methods Software and/or tools Refs

Multi-staged analysis

Genomic variation 
analysis

eQTL, mQTL and causal analysis Matrix eQTL94 and QTDT95 43,94,95

Allele-specific expression AlleleSeq96 and ChIP–SNP48 48,96

Domain knowledge- 
guided analysis

Correlation and mapping variation  
to pathway

ANNOVAR97, HaploReg98 and 
RegulomeDB99

97–100

Meta-dimensional analysis

Concatenation-based 
integration

Grammatical evolution neural network ATHENA 18,56,57

Bayesian network WinBUGS 54

Multivariate Cox LASSO model Glmpath 55

Transformation-
based integration

Kernel-based integration SKMsmo 59,60

Graph-based semi-supervised learning Graph-based semi-supervised learning 53,61,62

Model-based 
integration

Majority voting ipred 64,65

Ensemble classifier Weka 3 66

ATHENA, Analysis Tool for Heritable and Environmental Network Associations; ChIP, chromatin immunoprecipitation;  
eQTL, expression quantitative trait locus; LASSO, least absolute shrinkage and selection operator; mQTL, methylation QTL; QTDT, 
quantitative trait linkage disequilibrium test; SNP, single-nucleotide polymorphism.

R E V I E W S

6 | ADVANCE ONLINE PUBLICATION	  www.nature.com/reviews/genetics

© 2015 Macmillan Publishers Limited. All rights reserved

https://ritchielab.psu.edu/athena-downloads
http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
http://cran.r-project.org/web/packages/glmpath/index.html
http://imagine.enpc.fr/~obozinsg/SKMsmo.tar
http://mammoth.bcm.tmc.edu/papers/lisewski2007.gz
http://cran.r-project.org/web/packages/ipred/index.html
http://www.cs.waikato.ac.nz/ml/weka/


with cis-element variations and epigenetic modifica-
tions46. The first step of ASE approaches is to distinguish 
the gene product of one parental allele from the product 
of the other parental allele. Next, an analysis to associate 
the allele with gene expression (eQTLs) or methylation 
(mQTLs) can be carried out to compare the two alleles. 
Finally, the resulting alleles can be tested for correlation 
with a phenotype or an outcome of interest. The prac-
ticality of this approach depends on the extra resources 
used for experimentally tagging the two alleles and 
the subsequent mapping of the alleles. ASE and other 
extended methods — such as allele-specific transcript 
structure (ASTS), which looks at the frequency of 

expression of splice transcripts that are allele-specific 
— have been used to identify functional variation47 and 
protein–DNA48 interactions in humans. This allele- 
specific approach has also been used in other contexts. 
For example, several groups have explored allele-specific 
analysis in chromatin state49 and histone modification50. 
More allele-specific applications are likely to emerge  
as we continue to observe these allele-specific effects.

Domain knowledge-guided approaches. Other studies 
have integrated functional and pathway information that 
is generated and consolidated by initiatives such as the  
Encyclopedia of DNA Elements (ENCODE)51 and  
the Kyoto Encyclopedia of Genes and Genomes 
(KEGG)52 to select and annotate significant results. In 
this approach, the genomic regions of interest are inputs. 
Various software and databases can be used to determine 
whether the regions are within pathways and/or overlap-
ping with functional units, such as transcription factor 
binding, hypermethylated or hypomethylated regions, 
DNase sensitivity and regulatory motifs. For example, a 
researcher may take a collection of genotyped SNPs and 
annotate them with domain knowledge from multiple 
public database resources. The subsequent list of SNPs 
that have functional annotations can then be taken into 
the next stage, during which they are associated with 
other omic data, such as gene expression data (from 
microarray or RNA-seq) or metabolomic data. The 
resulting SNPs that have functional annotations and that 
are associated with other omic data can then be evaluated 
for correlation with a phenotype or an outcome of inter-
est. This approach can be similar to the triangle approach 
mentioned above, with the exception that there is another 
step of annotating the variants and only taking those 
with functional annotations to the next stage of analysis. 
Adding information from diverse data sets can substan-
tially increase our knowledge of our data; however, we are 
also limited and biased by current knowledge.

Even though multi-staged analysis uses both linear 
and nonlinear analytical mathematics to understand the 
relationship between two different types of data, there 
are clear limitations. For example, if complex traits are 
the result of a combination of DNA sequence variants, 
gene expression variability, methylation states and pro-
tein structure or expression changes that occurs simulta-
neously along with environmental perturbations (FIG. 2, 
Hypothesis B) rather than in a stepwise linear model 
(FIG. 2, Hypothesis A), the multi-staged approach will fail 
to effectively model the complex trait. However, when 
the relationship between genotype and phenotype can 
be modelled in a linear manner, as is the case for SNPs 
associated with metabolites and subsequently associated 
with phenotypes, for example, a multi-staged analysis 
would be applicable.

Data integration: meta-dimensional analysis
Meta-dimensional analysis combines multiple data 
types in a simultaneous analysis16,17,53 and is broadly 
categorized into three approaches: concatenation-based 
integration, transformation-based integration and 
model-based integration (FIG. 4).
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analysis involves the identification of genetic variation associated with measures  
of quantitative gene expression. b | Allele-specific expression involves the analysis of 
whether the maternal or paternal allele is preferentially expressed, followed by the 
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Multivariate Cox LASSO 
(least absolute shrinkage 
and selection operator) 
model
A method that performs 
variable selection via LASSO, 
followed by a multivariate Cox 
regression analysis.

Concatenation-based integration. Concatenation-based 
integration combines multiple data matrices for each 
sample into one large input matrix before constructing 
a model. One advantage of concatenation-based integra-
tion is that, after it is determined how to combine the 
variables into one matrix, it is relatively easy to use any 
statistical method for continuous and categorical data 
for analysis. For example, Fridley et al.54 performed con-
catenation-based integration by incorporating multiple 
types of genomic data into an association analysis with a 
complex phenotype using a Bayesian modelling strategy. 
Data from SNPs and mRNA gene expression were com-
bined into a single data matrix, and the joint relationship 
of mRNA gene expression and SNP genotypes was then 
modelled using a Bayesian integrative model to predict 
a quantitative phenotype (for example, drug cytotoxic-
ity). Mankoo et al.55 predicted time to recurrence and 
survival in ovarian cancer using copy number altera-
tion, methylation, miRNA and gene expression data 
using a multivariate Cox LASSO (least absolute shrinkage  
and selection operator) model. This strategy involves per-
forming variable selection via LASSO, rather than a 

stepwise method, and then modelling the selected set of 
variables in a Cox regression. The other main advantage 
of this approach is that concatenation-based integra-
tion is particularly useful for considering interactions 
between different types of genomic data. For example, if 
the underlying model that one is trying to detect is a SNP 
interacting with metabolite to explain disease risk and  
if the two variables are not combined into one model, 
then the effect may be missed. This approach has been 
used to combine SNP and gene expression data to pre-
dict high-density lipoprotein cholesterol levels18,56, and 
to identify interactions between copy number altera-
tion, methylation, miRNA and gene expression data  
associated with cancer clinical outcomes57.

The challenge with concatenation-based integration 
is identifying the best approach for combining multi-
ple matrices that include data from different scales in 
a meaningful way. For example, SNP data contain 0, 1 
or 2 as values corresponding to the copies of a specific 
allele per individual; copy number data may consist of 
–2, –1, 0, 1 or 2 as values corresponding to copy number 
status in a given genetic region (although they can also 
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trait  of  interest.  miRNA, microRNA; SNP, single-nucleotide 
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Kernel-based integration
The use of a valid kernel  
to perform a data matrix 
transformation before the 
integration of multiple  
data types.

Graph-based integration
The use of graphs to perform  
a data matrix transformation 
before integration. A graph is  
a natural method for analysing 
relationships between samples, 
as the nodes depict individual 
samples and the edges 
represent their possible 
relationships.

Majority voting
A method in which multiple 
models are constructed and 
subsequently evaluated to 
determine which performs 
best.

Ensemble classifiers
Classifiers constructed through 
the use of multiple learning 
methods to obtain better 
predictive performance than 
could be obtained from any  
of the individual learning 
algorithms.

Bayesian network
A type of statistical model that 
represents a set of random 
variables and their conditional 
dependencies via a directed 
acyclic graph.

be continuous-scale data); and DNA methylation pro-
files report between 0 and 1 for CpG loci. Identifying 
a way to appropriately integrate or combine these data 
without biases driven by data type can be challenging. 
Furthermore, this form of data integration can inflate 
high-dimensionality for the data, with the number of 
samples being smaller than the number of measure-
ments for each sample58. Thus, concatenation-based 
integration is only suitable if the appropriate way to 
assemble the data matrix for analysis is determined. 
Subsequently, statistical or computational models can be 
used to analyse the data matrix to consider interactions 
between different types of genomic data. Data reduction 
strategies as described above may be needed, depending 
on the number of variables in the data matrix. If there 
are too many variables, the analysis may not be compu-
tationally feasible; therefore, performing data reduction 
to limit the number of variables would be required to 
make this analysis possible.

Transformation-based integration. The second 
approach, transformation-based integration, combines 
multiple data sets after transforming each data type into 
an intermediate form, such as a graph or a kernel matrix 
(a symmetrical and positive semi-definite matrix that 
represents the relative positions of all samples conducted 
by valid kernel functions). Multiple graphs or kernels 
can then be merged before elaborating any models 
(FIG. 4). The transformation-based integration approach 
has the advantage of preserving data-type-specific 
properties from each data set when each type of data is 
transformed into an appropriate intermediate represen-
tation. In addition, this approach can be used to integrate 
many types of data, including continuous or categorical 
values and sequence data, as long as the data contain a 
unifying feature, such as patient identifiers linking data 
types. Moreover, the transformation-based integration 
approach is robust to different data measurement scales.

For example, Lanckriet et al.59 proposed kernel-based 
integration for protein function prediction with multi-
ple types of heterogeneous data, including amino acid 
sequences, hydropathy profiles, gene expression data 
and known protein–protein interactions, and Borgwardt 
et al.60 combined structural, sequential and chemical 
information into one graph model for predicting pro-
tein function via graph kernels. By contrast, Tsuda et al.61 
and Shin et al.62 predicted protein function with multiple 
networks using graph-based semi-supervised learning. 
Kim et al.53 proposed a graph-based integration framework 
for predicting cancer clinical outcomes using copy num-
ber alteration, methylation, miRNA and gene expression 
data. The disadvantage of transformation-based integra-
tion is that identifying interactions between different 
types of data (such as a SNP and gene expression inter-
action) can be difficult if the separate transformation of 
the original feature space changes the ability to detect the 
interaction effect. Each data type is transformed inde-
pendently, which can make it more difficult to detect 
some effects. The goal is to perform a data transforma-
tion that maintains the majority of the data-type-specific 
properties so that these types of interaction effects are 

not missed. Thus, transformation-based integration is 
suitable if there is a relevant intermediate representation, 
such as a kernel or graph, for each genomic data type, 
and the goal is to preserve data-type-specific properties 
while integrating them.

Model-based integration. Model-based integration, the 
third meta-dimensional approach, encompasses meth-
ods in which multiple models are generated using the 
different types of data as training sets, and a final model 
is then generated from the multiple models created dur-
ing the training phase, preserving data-specific proper-
ties. This approach can combine predictive models from 
different types of data. For example, model-based integra-
tion may allow the integration of data sets in which each 
data type is collected from a different set of patients but all 
patients have the same disease or phenotype. If the goal is 
to identify genetic, genomic and proteomic associations 
with ovarian cancer, data sets could be extracted from 
the public domain, where DNA sequence data may be 
available on five sets of patient samples, microarray data  
on eight sets of patient samples, and proteomic data on  
two sets of patient samples. Model-based integration 
would allow the independent analysis of each of the 15 
data sets, followed by an integration of the top models 
from each data set to look for integrative models. This is 
an area of future work for the Analysis Tool for Heritable 
and Environmental Network Associations (ATHENA) 
methodology56,57,63. ATHENA is a suite of analysis tools 
for performing systems genomic analyses to integrate 
different omic data and look for association with clinical 
outcomes. Model-based integration has been performed 
with ATHENA to look for associations between copy 
number alterations, methylation, microRNA and gene 
expression with ovarian cancer survival57. A neural net-
work model was constructed for each data type (such 
as copy number aberration and methylation) sepa-
rately, and the four resulting models were then analysed 
to create an integrative model. As another example, a  
majority voting approach was used to predict drug resist-
ance of HIV protease mutants64 using structural features 
of the HIV protease–drug inhibitor complex and DNA 
sequence variants. In most cases, the variables from the 
top models are combined in a subsequent analysis. In 
addition, ensemble classifiers — such as predicted sec-
ondary structure, hydrophobicity, van der Waals vol-
ume, polarity, polarizability and pseudo-amino acid 
composition — have been used to predict protein fold 
recognition65. The resulting models (from each data 
type) were combined in a weighted voting scheme to 
determine the fold of the protein. Finally, network-
based approaches have been developed in which a 
Bayesian network is constructed using gene expression 
data, metabolomic data and SNP genotype data, fol-
lowed by integration to construct probabilistic causal 
networks66–68. In each of these model-based integra-
tion examples, a model is built on each data type indi-
vidually, and the models are then combined in some  
meaningful way to detect integrative models.

It is important to note that model-based integration 
requires a specific hypothesis and analysis for each data 
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Overfitting
Building a statistical model  
that explains the training data 
set that but does not generalize 
to independent data.

Type I errors
(Also known as false positives). 
The acceptance of the 
alternative hypothesis when 
the null hypothesis is true.

Genome-wide association 
studies
Studies that aim to identify 
disease- or trait-related genetic 
variations from the whole 
genome.

type, and a mechanism to combine the resulting mod-
els in a meaningful way. Consider a data set of cancer 
tumour tissue and normal tissue with DNA sequence, 
methylation and metabolomic data measured. Each of 
the three data types can be analysed for association with 
cancer. The resultant DNA sequence model, methyla-
tion model and metabolomics model can then be inte-
grated to identify a meta-dimensional model. As the 
only variables that are incorporated into the integra-
tive analysis are the ones that are detected in the data-
type-specific modelling process, it is possible to miss 
some of the interactions between different data types 
if they do not have effects to identify within the data 
type. For example, if there is a pattern of methylation 
and another pattern of protein expression that are not 
associated with the outcome independently but only 
associated through their interaction, then their effects 
will be missed in model-based integration. Moreover, 
these forms of ensemble-based approaches are well 
known for overfitting69. Therefore, model-based integra-
tion is particularly suitable if each genomic data type is 
extremely heterogeneous, such that combining the data 
matrix (concatenation-based integration) or performing 
data transformation to a common intermediate format 
(transformation-based integration) is not possible.

For the meta-dimensional analysis descriptions 
above, we only consider the data integration approaches 
from the point of view of a supervised learning strat-
egy in which data with known labels (outcome or phe-
notype) are used. However, unsupervised learning is 
another category for data integration in which there are 
no known labels or phenotypes of interest, but analysis 
of the data set (one approach is to use clustering) might 
identify hidden structure in the observed data. For 
example, iCluster uses a joint latent variable model for 
integrative clustering of the meta-dimensional genomic 
data70. In addition, there are other integrative clustering 
methods based on the Bayesian approach in the con-
text of exploratory or unsupervised learning71,72. The 
unsupervised learning strategies may also potentially 
add increased power and benefit to meta-dimensional 
data analysis.

Caveats and limitations
In this Review, we discuss several strategies for analysing 
multi-omic data, with the goal of elucidating the genetic 
architecture of complex traits using data integration 
approaches. As with any analysis, there are limitations 
and caveats to each method and, in addition, there are 
some broad limitations that should be mentioned. First, 
it is difficult to comprehensively assess the statistical 
power of many of these methods. Some approaches 
have theoretical distributions from which power calcula-
tions can be performed73. For others, simulation studies  
and/or permutation testing is needed to estimate empiri-
cal power30. In either case, these power estimates will 
apply only to the data set or simulation at hand, and they 
have limited use for interpreting the universal power of 
the approach. Therefore, power calculations or estimates 
based on these systems genomics approaches should be 
interpreted carefully.

Some of the analysis strategies described have poten-
tial pitfalls that could lead to limited power to identify 
certain associations. For example, a single variable (such 
as a SNP) in the genome may often be functional and 
associated with a trait, whereas SNPs in LD with the 
functional SNP may be associated but have no function. 
By performing data reduction, we may by chance filter 
out the functional SNP but keep the non-functional 
SNPs that are in LD with it, thereby missing the associa-
tion with the functional SNP. In addition, most of the 
analysis techniques do not perform an exhaustive evalu-
ation of possible statistical or computational models, as 
the computation time can be prohibitive. These meth-
ods rely on surrogate signals and correlation in the data 
that would allow model identification without exhaus-
tively testing all possible models. Therefore, depending  
on the approach, true models (those that actually explain 
the biology) might not be assessed. Some data reduc-
tion methods, such as factor analysis, result in derived 
variables that extract orthogonal, or independent, 
relationships from the data; however, understanding 
which primary variables are essential can be difficult. 
Therefore, interpreting models composed of derived 
variables can be challenging.

Discussion of these limitations and caveats is not 
meant to discourage readers from using any of these 
systems genomics approaches. However, it is critical that 
the assumptions of the model, limitations of the analysis, 
and caution about inference and interpretation be taken 
into consideration for a successful multi-omic study.

Replication. An important consideration in large-scale 
analyses is the potential for false discoveries, so it is 
important to determine a way to identify results that are 
more likely to be true associations and not false positives. 
The ‘gold standard’ in human genetics is to look for rep-
lication of results using independent data74, and seeking 
replication of multi-omic models is one way to identify 
robust predictive models. The strictest definition of rep-
lication with genetic variation data requires the same 
type of variation in a locus to be associated with the  
same trait and with the same direction of effect74. This 
ensures a more stringent protection from type I errors. 
However, there are problems with this definition for 
replication. For example, when using SNP data, this 
replication requirement ignores the fact that most SNP 
variants reported in genome-wide association studies are 
tag SNPs. Therefore, the tested SNPs are likely to be non- 
functional but correlated with the functional SNP owing 
to LD. As such, one would not necessarily expect the 
same variants to be associated in multiple data sets, espe-
cially when small differences in allele frequency varia-
tion can have a large effect on LD patterns75. Thus, in one 
data set, two SNPs might show main effects and an inter-
action effect, whereas in a second data set, SNPs in LD 
with those SNPs from the first data set might exhibit the 
strongest signal. When seeking replication, we recom-
mend careful consideration of the underlying functional 
genomic units that are represented by each variable, and 
seeking replication of the genomic signals that are rel-
evant and appropriate to the data at hand. There may be 
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complex predictive models detected in the replication 
data set that do not exactly represent the initial discovery 
predictive models but that contain the same majority of 
genes or SNPs in LD with original SNPs, or genes within 
a same pathway. In this case, a similar model in which 
the same genes are present in the discovery and repli-
cation data sets with the same biological context may 
also be considered replication of the biological signal. 
The data set used to seek replication is also an important 
consideration. In some cases, external replication is pos-
sible, so independent data sets can be used. However, 
because of the cost of some molecular assays and the 
limited availability of tissues, independent data sets are 
not often readily available. In such cases, internal rep-
lication can be implemented. Several data-splitting or 
internal-validation approaches are available (reviewed in 
REF. 30). Finally, strategies are in development for using 
extrinsic data to develop evidence to support an associa-
tion that cannot be directly replicated. For example, the 
diverse convergent evidence (DiCE) approach integrates 
information from multiple sources (omics, informatics 
and laboratory experiments) to estimate the strength of 
the available corroborating evidence supporting a given 
association76.

Validation. Functional validation is a viable alternative 
to replication, and the focus lies in performing addi-
tional complementary or orthogonal experiments to 
corroborate the evidence that emerged from the origi-
nal discovery experiment. For example, basic experi-
mental bench science can be used to provide validation 
for statistical models77,78. This type of evidence has the 
potential to identify the biological mechanisms that 
underlie the statistical association. As such, this is a highly  
desirable validation technique.

Another validation approach is the use of text min-
ing to find literature that supports or refutes the original 
findings. Many text-mining tools have been developed as 
a means of performing this type of informatics analysis. 
Gene relationships among implicated loci (GRAIL) is 
a commonly used tool in human genomics that allows 
one to search for the co‑occurrence of genes in PubMed 
abstracts to determine potential biological connections 
between associated genes79.

Finally, in silico modelling is an additional approach 
that can be useful. Based on a series of experiments that 
provide small portions of a complete model, mathemat-
ics can be used to integrate these different elements and 
make predictions about outcomes. For example, Crooke 
et al.80 used a theoretical pathway for oestrogen metabo-
lism, a statistical model of gene–gene interaction, a series 
of kinetic experiments and differential equations models 
to predict breast cancer risk.

Correlated variables. As mentioned above, different 
types of high-throughput data are likely to have highly 
correlated variables both within and between data types. 
In genome-wide SNP arrays, many SNPs are correlated 
with one another owing to LD. There are also varying 
levels of correlation, for example, between SNPs and 
gene expression, as well as between gene expression  

and methylation. These correlations can be used to help 
to guide, filter or interpret data; however, correlation can 
create problems for some analytical methods. In regres-
sion analyses, multi-collinearity (that is, high levels of 
correlation) might not allow matrix inversion, which is 
required to estimate reliable regression coefficients81. It  
is important to understand how each method handles cor-
related data, and whether pre-preprocessing is necessary 
to reduce the level of correlation (that is, pruning out cor-
related variables). The decision to reduce the correlation 
will be based on the analysis method selected.

Overfitting. Finally, overfitting is always a risk in data-
driven analytical methods. This occurs when the model 
classifies or predicts the outcome for the samples within 
the data set extremely well but performs poorly on data 
that was not used to build the model. This often occurs 
when dealing with high-dimensionality problems in 
the data (such as small sample size and many inde-
pendent variables), which leads to sparse data matri-
ces when considering three, four or more variables in 
the model. Fortunately, there are many techniques to 
prevent overfitting. For example, cross-validation is a 
statistical technique in which some proportion of the 
data set is used to build the model and a subset is used 
for testing the model30. Another approach is the use of 
receiver–operating curves and the area under the curve. 
These approaches balance the sensitivity and specific-
ity of the models to help to select the optimal models82. 
Additionally, Pareto optimization is a technique that is 
commonly used in computer science; two metrics of the 
models are compared: a fitness metric (that is, accuracy 
or area under the curve) and a parsimony metric (that 
is, the number of variables in the model)83,84. The goal in 
Pareto optimization is to find the fittest model with the 
simplest structure. This approach works relatively well 
because often the reason for overfitting is the inclusion 
of too many variables in a model.

Future directions
Our ability to generate molecular data has been improv-
ing at a rapid pace for the past decade, and this trend is 
likely to continue for the next decade. Most of the omic 
data are generated on crude tissue extracts from whole 
blood or other tissue types, such as lung, liver and heart 
tissues. However, single-cell technologies are advancing 
and showing promise for the future, and it is likely that 
we will soon have the capability to generate omic data 
on single cells from different tissue types of interest. The 
costs are also likely to continue to decrease, making the 
ability to generate these high-throughput omic data on 
very large sample sizes a reality.

To complement the continuation of data generation 
technologies, data analysis strategies will also experi-
ence major advancements. Computer technology for 
processing and storing data continues to evolve and 
expand, and this will enable more computational power 
to push analyses further than have been possible before. 
Additionally, the reductionist paradigm of looking for 
the ‘low-hanging fruit’ (the single variables that explain 
some portion of trait variability) is slowly becoming 
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