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Abstract

Normalization of expression levels applied to microarray data can help in reducing measure-
ment error. Different methods, including cyclic loess, quantile normalization and median or mean
normalization, have been utilized to normalize microarray data. Although there is considerable lit-
erature regarding normalization techniques for mRNA microarray data, there are no publications
comparing normalization techniques for microRNA (miRNA) microarray data, which are subject
to similar sources of measurement error. In this paper, we compare the performance of cyclic loess,
quantile normalization, median normalization and no normalization for a single-color microRNA
microarray dataset. We show that the quantile normalization method works best in reducing dif-
ferences in miRNA expression values for replicate tissue samples. By showing that the total mean
squared error are lowest across almost all 36 investigated tissue samples, we are assured that the
bias correction provided by quantile normalization is not outweighed by additional error variance
that can arise from a more complex normalization method. Furthermore, we show that quantile
normalization does not achieve these results by compression of scale.

KEYWORDS: microRNA, median normalization, cyclic loess normalization, quantile normal-
ization, robust estimates, smoothing spline, mean squared error
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1 Introduction

In microarray experiments, variation of expression measi@ents among arrays
can be attributed to many sources, such as differences ipledRNA prepa-
ration, cDNA labeling, image intensity and microarray hyiration/wash effi-
ciency. Normalization of expression levels applied to mégray data can help
in removing this error. Different methods, including cycloess, quantile nor-
malization (Bolstad et al. 2003) and median or mean norraidia (Churchill
2002, Churchill 2003, Churchill and Oliver 2001, Kerr andugthill 2001, and
Wolfinger et al. 2001), have been utilized to normalize macray data. Briefly,
cyclic loess makes the MA plot of probe intensities from gveair of arrays
scatter about théd/ = 0 axis, quantile normalization makes the distributions
of expression levels the same across arrays, and medianaor noemalization
shifts the individual log-intensities on each array so tth& median or mean
log-intensities, respectively, are the same across arfidysse normalization al-
gorithms can be applied either globally to an entire dataoséically to some
physical subset of the data (Quackenbush 2002). Irizara}. ef2003) applied
the quantile normalization procedure to normalize dilntiata and spike-in data
from Affymetrix arrays, and showed how quantile normaliaatremoved bias
as compared to no normalization. Their analysis was unigqukat they knew
the true expression levels and could therefore determiealégree of bias re-
duction from quantile normalization.

MicroRNAs (miRNAs) are noncoding RNAs of 19-24 nucleotidbat are
negative regulators of gene expression. Recently imgtcas important in
development and normal physiology, microRNAs are abndgmedpressed in
many human cancers (Volinia et al. 2006, Lu et al. 2005). doee aberrant
microRNA expression has been shown to initiate and promateirtogenesis
(reviewed in Hagan and Croce 2007). These microRNA expassgnatures
may reveal new oncogenetic pathways in human cancers. Btersgtic in-
vestigation of microRNA expression, oligonucleotide-dxmicroarrays for mi-
croRNAs in human and mouse tissues have been developedlyedéen et al.
2004) and several commercial platforms are now availalwedale, more than a
hundred published reports have used microRNA microarrays/estigate their
expression profiles, where more than two-thirds have usaglesicolor versus
two color hybridization systems. Although there is subs#diiterature regard-
ing normalization techniques for mMRNA microarray dataséhare no published
reports comparing normalization techniques for microRMARNA) microar-
ray data, which are subject to the similar sources of erraatian.

Many statistical reports on mMRNA microarrays have focusedtfymetrix
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MRNA arrays, which have an exceedingly high density of psabat aren situ
synthesized on the array. For example, in one Human Genor38 Blus2.0
GeneChip, probe sets for each mRNA, including numerousdi@meping genes,
consist of eleven oligonucleotide probes selected to miarispecificity and to
have similar melting temperatures across the entire amagontrast, microRNA
microarrays are often lower density spotted arrays. Ouudgas on single color
microRNA microarray. This type of microarray is used predioamtly in com-
parison to dual color arrays. Results from the Version 3.€raRNA microarray
used in this study and its earlier versions have appearedne than 40 publi-
cations. The Version 3.0 microarray contains 3790 probestag in duplicate.
The probes are 40 nucleotides in length, consisting of thegéc sequence
that has the mature microRNA sequence and additional flgnk@ses. With
the exception of six probes designed agahrstbidopsis thaliana microRNAs,
the rest of the probes are derived from known and predictedamiand mouse
microRNASs. This design allows for the detection of maturevadl as precursor
mMiRNAs and is particularly helpful in determining if comptibnally predicted
MiRNAs are real. Although U6 snRNA is frequently used as arodtior mi-
croRNA experiments, this noncoding RNA has been shown tp @amuch as
five fold for equivalent amounts of total RNA by both micraayrrand North-
ern analysis (Hagan and Liu, unpublished observationshceleprobes for U6
snRNA were not included in the Version 3.0 microarray. Mdstot all, com-
mercially available microRNA microarrays do not have cotgifor endogenous
RNAs that have been shown to be largely invariant betwesodisamples.
Given the short length of miRNAs and the fact that far more mARMNre
known than miRNAs, it is important to compare normalizatioathods specif-
ically for the miRNA microarray data. Although microRNA maarrays are
lower density spotted arrays than mRNA microarrays, theyrat “boutique”
arrays. For example, microRNA arrays do not meet the foltgariteria: “more
than half the probes might be differentially expressed ketwany two samples
and that the differential expression might be predominaitelone direction”
(Oshlack et al. 2007). We also do not expect global diffeesracross miRNA
arrays. As an example, the biggest difference in miRNA esgions was ex-
pected between brain and heart tissues, we found tifly of miRNAs were
differentially expressed with a greater than 2 fold diffeze, when comparing
these distinct tissue types. Other examples include tieeaeted miRNA stud-
ies in cancer (Calin et al. 2005, \Volinia et al. 2006, Yanehet al. 2006)
and tissue differentiation (Babak et al. 2004, Barad et 8042 Garzon et al.
2004) in Davison et al. (2006). For the three referencedaastadies that used
microRNA microarrays, the number of differentially expsed microRNAs are
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13/245 (5.3%), 22/228 —57/228 (9.6% — 25.0%, range depends on which of six
tumor/normal comparisons were performed) dad352 (12.2%). For the three
referenced differentiation studies, the number of diffeicly expressed mi-
croRNA are19/399 (4.8%), 25/154—35/154 (15.2% —22.7%, range depends on
the specific pairwise tissue comparison) @ad150 — 57/150 (23.3% — 38.0%,
range depends on the specific pairwise tissue comparisoe).ca conclude
with confidence that much less thad?o of miRNAs are differentially expressed
based on our experience and assessment of the literatuaddition to our cus-
tom microRNA microarrays, there are numerous commerceailbilable miRNA
microarrays. For example, LC Sciences, Exigon, Agilentjtingen, and Am-
bion sell mMiRNA microarrays, with564, 4000, 15000, 3000, and1224 miRNA
probes, respectively. Hence, the probe density of our arsiynilar to many cur-
rently available commercial platforms. Importantly, higinoughput sequencing
of microRNAs is rapidly expanding the number of known mich&s. Hence,
our custom arrays soon will need to be updated with even motaes to reflect
the recently identified microRNAs. The microRNA registryefgion 10.1) cur-
rently has sequences f6B95 miRNAs. Even though microRNA microarrays
are not "boutique” arrays in general, a few cases exist wkage numbers of
microRNAs will be differentially expressed in only one diten. Knockouts
of essential microRNA biogenesis proteins such as Drosk&CR8, or Dicerl
lead to a dramatic reduction in steady state microRNA lelbglblocking pro-
duction of mature microRNAs (Kumar et al. 2007). These dlaloavnregula-
tion cases are exceptionally easy to detect by microarraheapercentage of
microRNAs expressed above background is considerablgréift in compari-
son to controls. Other confirmed examples that show unitiineal microRNA
regulation are quite rare. Using a novel bead-based micPopfiling system,
microRNAs were reported to be downregulated primarily in@as (129 of 217
investigated). Almost all studies of microRNAs in cancegluding all the re-
search referenced in this manuscript, have found roughnicad numbers or
a slight enrichment for upregulated microRNAs in cancestiog doubt on the
conclusions of Lu et al. (2005). Even research that at fishgg might seem
to support the conclusions of Lu and colleagues demonstuatequivocally the
opposite. For example, Chang et al. (2008) reported that dtpcession leads
to widespread repression of microRNAs. As their Suppleerdable 1 shows
for 313 human microRNAs investigated, 11 and 17 microRN/Asupregulated
and downregulated, respectively, at least two fold uponded Myc expression.
Although vigilance must be exercised to make sure that tlierdying assump-
tions are valid, the normalization methods that we present@mpatible for the
vast majority of studies using microRNA microarrays.
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In this paper, we compare the performance of median, cyadisd, quantile,
and no normalization for miRNA microarray data. The datduded 72 mi-
croarrays obtained from RNA from 26 human and 10 mouse tsstust were
hybridized as techinal replicates. Hence, each RNA sampketwbridized to
two independent microarrays. Since replicate samplesig@hioitheory, have al-
most identical values for expressions, one can comparerdiff normalization
techniques in terms of the closeness of normalized measmtsnn the repli-
cated samples. Moreover, there are no confounding bickbgitects that come
from tissues from different individuals. The differencestleen these paired
expression levels with and without normalization can beddigl into a bias and
variance components by expression level. Both of these AHRNMIRNA dif-
ferences components should be reduced after applying tiaatian methods.
We used these differences to provide direct evidence of aipalmlity of each
method of reducing these two components. It was criticaktoréne the effects
on both quantities because the complexity of a transfoonatiay increase the
error variance over and above its bias reduction. To reseimilv normalization
is typically applied to samples, normalization was donébglly across all 72
samples. This is an important distinction from normalizeagh of 36 replicate
pairs separately, where this level of normalization coulabipice artificially low
variance and bias.

Section 2 describes the normalization methods in detadti®@e3 describes
the miRNA data used in this paper. Section 4 compares nazateln methods.

2 Normalization Methods

Three commonly used normalization techniques are revieBagpose that we
have the (log base 2 transformed) probe level expressiaesdtomp miRNAs
andn arrays in gp x n matrix X.

Median normalization shifts miRNAs expressions on each array by additive
constants so that the medians of mMiIRNAs expressions araithe 8cross arrays
by the following steps:

e Take the median of each column Xfand generate a-dimensional me-
dian vectorM;

e Calculate the overall median of the vectar,

e Shift miRNAs expression values of each array by subtradiivegdiffer-
ence between the median of each array and the overall mediartfiem.
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Instead of matching the median only across the ar@ysntile normaliza-
tion makes the distributions of expression levels the same s@ways by the
following steps:

e Sort each column oK separately to generate a sorfed n matrixY;

e Take the mean of each row & and generate a-dimensional vector,,
called the baseline array;

e Get the normalized miRNAs expressions for each array byaagmg the
baseline array, to have the same ordering of the corresponding column
of the matrixX so that empirical distributions of miRNA expressions are
the same as that of the baseline array across arrays.

Cyclic loessconsiders the MA plot of probe intensities from every pair of
arrays(X;;, X;;-), with fixed j # 5/ andi = 1,2, ..., p, and makes the M and A
pairs scattered around tli¢ = 0 axis by the following steps:

e ComputeM; = X;; — X;; andA; = 2(Xy; + X,j);

e Fit a loess curve by regressidid on A, and denoted the fitted vector by
M;

e Setting the vectoD = (M — M)/2, get the normalized miRNAs expres-
sions for(.X;;, X;;) by modifying X;; to X;; + D, and X, to X;; — D;,
i=1,2,...p.

3 Description of Data

Total RNA was purchased from Ambion Inc. Microarray labgland hybridiza-
tion were performed as previously described in Liu et al. 00 except for
the exceptions noted below. The Ohio State University Cetmgnsive Can-
cer Center Version 3.0 microRNA microarray was used anddhisy contains
3790 oligo probes derived from 578 mature miRNAs spotteduplidate (329
Homo sapiens, and 249 Mus musculus) that are annotated milRBA reg-
istry http://microrna.sanger.ac.uk/ sequences/ (Aaukdiov. 2005). Of the 396
evolutionarily conserved mature microRNAs between mice lanman in Ver-
sion 10.1 of the microRNA registryi8% are identical in length and sequence.
Hence, many of the mouse probes serve as additional cofbraliseir human
counterparts and vice versa. In addition, 1493 human and ti®use oligo

Published by The Berkeley Electronic Press, 2008 5



Satistical Applicationsin Genetics and Molecular Biology, Vol. 7 [2008], Iss. 1, Art. 22

probes for miRNAs computationally predicted in human andugs&y respec-
tively, are also spotted in duplicate. Often, more than aid@ set exists for a
given mature miRNA. Additionally, there are duplicate peatpots correspond-
ing to most precursor miRNAs. Hybridization signals wergnoately detected

with Streptavidin-Alexa 647, conjugate and scanned imé§esn 4000B) were

guantified using the Genepix 6.0 software through a locatgpaeind correction

(Axon Instruments, Sunnyvale, CA).

4  Analysis

Background-corrected median signals for duplicate praimesn array were av-
eraged. After normalization across all 72 arrays,Xetbe the log base trans-
formed expression value of thith miRNA for a certain tissue, and |1& be the
log base2 transformed expression value of tita miRNA for the replicate of
the tissue.

Bias. The averagel; = (X; + Y;)/2 and the differencé/; = X, — Y; of
expression values for each miRNA can then be computed. Theplditof the
two vectorsX; andY; is a45-degree rotation and axis scaling of their scatter
plot. This plot is particularly useful for array data becaud; represents the
log fold change andi; represents the average log intensity for ttilemiRNA.
When the loess curves of the MA plot deviate from the horiablnte at)M = 0
, this demonstrates differences in the intensity levelsvbeh two arrays from
the same tissue (Gentleman et al. 2005). In contrast, ifdéssl curves align
with M = 0, the normalization method is considered to exhibit litiasbat all
levels of expression. When MA plots and loess curves wereenfadhe repli-
cate array data from human brain tissue using no normadizathedian normal-
ization, quantile normalization and cyclic loess, we ofedrthat the quantile
normalization method removed bias the best (Figure 1C)otb&s curve closely
followed the horizontal line at/ = 0. No normalization, median normalization
and cyclic loess behaved similarly in that their loess csia@ not aligning with
M = 0 closely enough (Figure 1A, 1B and 1D).

Binning. To compare the normalization methods in how much they retluce
error variance in addition to reducing bias, we formally raledl the mean and
variance of differences in replicate arrays as a functiothefr expression lev-
els. In order to obtain reliable estimates of the expres&wals, we binned
duplicates according to their average expression leveldmd then proceeded
by modeling the mean and variance based on the binned data.

We created equally-sized bins containiygmiRNAS probes. For each bin,
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Figure 1: MA and loess plot of expression values for the hutmamn tissue
data. A) without normalization, B) after median normaliaat C) after quantile
normalization and D) after cyclic loess.

we summarized the differences in the replicate arrays byianembsolute devi-
ation (MAD) of the differences and median of the different@®btain robust
estimates of variance and bias, respectively (Lin et al. 2200 he smoothed
MADs and medians of the differences were used to detectrapgsie effects due
to the different normalization methods as a function of espion levels. Lower
values of smoothed MADs and smoothed medians closer to zenssaaverage
expressions correspond to a superior normalization method

As stated above, each bin consisted3dfmiRNAs probes. For fixed:
(1 <k <K),letXg, (0 =1,2,...,34) be the expression value of thith
miRNA in the kth bin for a specific tissue, and I&t;). (: = 1,2,...,34) be the

Published by The Berkeley Electronic Press, 2008 7



Satistical Applicationsin Genetics and Molecular Biology, Vol. 7 [2008], Iss. 1, Art. 22

expression value of th#gh miRNA in thekth bin for the replicate of the tissue.
The difference between the replicate arrays expressiaresdbr each miRNA
in the kth bin can be denoted b9 ;). = X — Yo (1 = 1,2,...,34), and the
corresponding observations by,,. We assume that for fixekl
i.i.d. o .
Dgy 77 N(pw,03) i=1,2,...,34
and use
mdy = mediaridy.)

as a robust location (center) estimatgf= E[D(,)] , and

MADd;, = mediandy, — mediardy)|,

as arobust estimate of scale (spread), which is propoitiona = /var D]
under normality.

For the average expression values of miRNAs in ktiebin across certain
tissue replicates, let ), = (X + Yr)/2 (i = 1,2,...,34) andag, be the
ith observation. Similarly, for estimation of the centerloé taverage expression
values in each bin, we consider

max = mediartay.).
As Figure 1A suggests, it is sensible to mogdglando;, as a function of the
center of the average expression values of miRNA replidatd®e kth bin.
For the paired observationsna;, md;), (mas, mds), ..., (mag, mdg), we
modeled the median difference as a smooth function of theanewerage

mdy, = n(mag) + €, k=1,2,.., K

with €, ~ N (0,07, ;) and with a different variance for each bin. The smoothed

relationship; was obtained by the weighted smoothing spline with weightsé

to the reciprocal of the squared MAD of difference. Quarmiibemalization gave

the best results when comparing the weighted smoothed £fioveéhe median

difference in expression values using the human braindigsiia (Figure).
Similarly, for the paired observatioigwa,, M ADd,), (mag, M ADds), ...,

(max, M ADdg ), we considered the following model with unequal variance

MAde = f(mak) + €, k= 1,2, ,K

http://www.bepress.com/sagmb/vol7/iss1/art22 8
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Figure 2: weighted smoothed medians of difference of exgiwesvalues for the
human brain tissue data. A) without normalization, B) aftexdian normaliza-
tion, C) after quantile normalization and D) after cycliess.

ande;, ~ N(0,03,,p). The smoothed MAD of differencescan again be ob-
tained by smoothing splines with the smoothing paramelects by general-
ized maximum likelihood (GML) (Gu 2002). It was difficult t@s differences
in the relationship betweei ADd andma among the normalization methods
(Figure 3), but they became more apparent if the bias and variance vegne
bined into a mean-squared error statistic.

Confidence intervals. The fitted medians of differencesis the smoothed
estimate of bias parametey, and the fitted MAD of differencesis the smoothed
estimate of scale parameter. We used the fitted MAD to estic@tfidence in-
tervals around bias and obtained a pointwise confidencevaittor the bias by
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MAD of difference of expressions
MAD of difference of expressions

MAD of difference of expressions
MAD of difference of expressions

Figure 3: smoothed MADs versus median averages for the huoran tissue
data. A) without normalization, B) after median normaliaat C) after quantile
normalization and D) after cyclic loess.

binned expression values as

n(mag) ﬁﬁ(mak),

(see Hoaglin et al. 2000). The confidence band after quambitenalization
encompasses the horizontal lineMt= 0, while those using no normalization,
median normalization or cyclic loess do not include zeroléoger expression
values (Figure 4).

Mean Squared Error. We obtained the mean squared error (MSE) of the
difference in expression values (including variance andsed bias)

MSE; = E[D{)] = vaDy] + E[Dqyl* = o + pii,

http://www.bepress.com/sagmb/vol7/iss1/art22 10
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Figure 4: confidence band of the bias for the human braingidsta. A) without
normalization, B) after median normalization, C) after qtil@ normalization
and D) after cyclic loess.

which can be estimated by the smoothed estimates

[f (may,)
0.6745

(see Huber 2003). The estimated MSE for quantile normabzds smallest
when average expression values are greater than noisse E#wleasurements,
and the estimated MSE for cyclic loess is slightly largemthiaat of quantile
normalization across all average expression values. Meaabamalization per-
formed similarly to no normalization (Figure 5).

To evaluate the global bias and variance for each methodyeraged MSEs
across expression levels greater thds the valued.5 (log base 2 transformed)

]2 + ﬁ(mak>27
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1.0

MSE of difference of expressions

median of average of expressions
Brain tissue

Figure 5. MSE curves without normalization (black, solidd), after median
normalization (green, dashed line), and after quantilenadization (red, dot-
dashed line) after cyclic loess (blue, dotted line).

was selected becau8s’% of the blanks (spots lacking oligonucleotide probes)
gave intensities less than this value. The average MSEsd@onmalization,
median normalization, quantile normalization and cyctieds using the brain
tissue data were 0.278, 0.274, 0.225, 0.270 respectivehesd results were
found consistently across the other 35 tissue types (Figyrehere the MSEs
were lower for quantile normalization (coded 2) in almodtteEsue samples
compared to no normalization (coded 0), median normatimafcoded 1) and
cyclic loess (coded 3), except for human lung, human liveman thymus,
mouse liver and mouse lung. When the normalization methcete @pplied
to each tissue type separately, instead of to all 72 arraysther, the results
were similar.

Checking for Scale Compressionlt is possible that the superior results for
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Figure 6: mean of MSEs for the difference in expression \&@lighout normal-
ization (0 and black), after median normalization (1 andegje after quantile
normalization (2 and red) and after cyclic loess (3 and blue)

guantile normalization is the result of the compressionhef $cale downward
after transformation. To check this, we first calculatedfiicents of varia-
tion (CV) as the ratio of an estimate of the standard deuviadtibmeasurement
(VMSE) for each bin to the mean expression for that bin and tiverage the
ratios across bins. We found the CVs followed the same patteithe MSEs,
that is, typically lower values for quantile normalizatianross tissues (Figure
7). It is also possible that the superior results for quamirmalization is the
result of compressing the scale from both ends after tramsfton; thereby re-
ducing spread and sensitivity of transformed measuremdiot€heck this, we
calculated the average variance of expression levelsstines6 tissues for each
miRNA. This variance consists of true variance across é#issnd measurement
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error as obtained with the MSE. Averaging the variance acno&kNAs and the
MSEs across tissues, we found the ratios of signal (trueéanee to noise (mea-
surement error) variance wete.0, 14.0, 16.3 and16.3 for no, median, quantile
and cyclic loess normalization respectively.
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Figure 7: mean of CVs for the difference in expression valugsout normal-
ization (0 and black), after median normalization (1 andegje after quantile
normalization (2 and red) and after cyclic loess (3 and blue)

Comparative Study We compare real-time RT-PCR miRNA data (Lee et al.
2008) with our microarry miRNA data, since twenty-one tssuere common
to both datasets. Specifically, we focused on brain and j&ade these tissues
are quite biologically distinct and have substantial défeces in their miRNA
expression profiles. If a normalization technique was gvaggressive, then
there would be an "averaging-out” effect, leading to a digant decrease in the
number of differentially expressed miRNAs. A well knownfdience between
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microarray and RT-PCR data is that the fold changes obsdyyadicroarray
tend to be compressed in comparison with fold changes obddry RT-PCR.
We found51 miRNAs were characterized by a four fold difference in exgsien
by RT-PCR. For the microarray data on identical miRNAs, wenid that36,
35, 35, 35 miRNAs were two fold differentially expressed for no, madiayclic
loess and quantile normalization respectively. This sehiBfNAs was found to
have roughly arv0% overlap with the RT-PCR data. The observed values for
fold changes varied little with respect to the normalizatmethod used. In this
respect, we could not conclude any superior normalizatiethiod based strictly
on this analysis, but we could at least conclude that queantiimalization is not
worse than other methods in terms of its sensitivity.

5 Conclusion

We showed that the quantile normalization method works imesgducing dif-
ferences in miRNA expression values for duplicate tissuepdes, cyclic loess
works slightly worse than quantile normalization, whereasiormalization and
median normalization behave similarly and seem to be iof¢d quantile nor-
malization and cyclic loess with regard to bias. This is nopssing because
guantile normalization adjusted better for differentighdacross the scale of
expression values. By showing that the total MSE was lowsrsacalmost all
36 tissue samples, we were assured that the bias correctwided by quan-
tile normalization was not outweighed by additional errarignce that can arise
from a more complex normalization method. Furthermore, hee&d that quan-
tile normalization does not achieve smaller replicaticleby compressing the
scale downward or by compressing the scale from both ends.
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