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The PCR is widely used in many applications throughout the world. It has its

secure place in the history of molecular biology as one of the most revolutionary

methods ever. The principles of PCR are clear, but how can the reaction procedure

be optimized to bring out the best in each assay? What is the status quo and what

is next? Where are there areas for improvement?

INTRODUCTION

PCR is defined as a relatively simple heat-stable Taq polymerase–based tech-

nique, invented by Kary B. Mullis and coworkers,1,2 who were awarded the

Nobel Prize for chemistry in 1993 for this discovery. However, this terrain is

contested, and many other scientists were instrumental in making PCR work

in all kinds of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and pro-

tein (immuno quantitative PCR [qPCR])–based applications. Reverse transcrip-

tion (RT) followed by PCR represents a powerful tool for messenger RNA (mRNA)

quantification.3–5 Nowadays, real-time RT–PCR is widely and increasingly used

110
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because of its high sensitivity, good reproducibility, and wide dynamic quantifi-

cation range.6,7 Today, quantitative real-time RT–PCR (qRT–PCR) represents the

most sensitive method for the detection and quantification of gene expression

levels. It has its tremendous advantages in elucidating small changes in mRNA

expression levels in samples with low RNA concentrations, from limited tissue

samples and in single cell analysis.8,9 This [what] is a particular requirement ofAU: Please
indicate
“This
what?”
here.

expression profiling, which focuses on the fully quantitative approach for mRNA

quantification, rather than simply qualitative analysis.

The enormous potential for scientific and diagnostic assays makes a compre-

hensive understanding of the underlying principles of RT–qPCR mandatory. As

a quantitative method, it suffers from accumulated problems arising during the

amplification workflow in (1) the pre-PCR steps (tissue handling, RNA extrac-

tion and storage), (2) the RT and PCR steps (RT and PCR enzyme, primer design,

detection dye, plastic ware, sealing), and (3) the post-PCR steps (data acquisition,

background correction, quantification method, efficiency correction, normaliza-

tion, statistical testing, data visualization) (summarized by Pfaffl10). Importantly,

the absolute fidelity of a qRT–PCR assay is associated with its “true” specificity,

sensitivity, reproducibility, robustness, and correctness.11

This chapter explains the improvements in chemistry, hardware, and software

over the last two decades; focuses on considerations of specificity, sensitivity,

variability, reproducibility, and data analysis; and presents some new ideas for

data analysis.

PRE-PCR STEPS

The so-called pre-PCR steps are important and influence the result of a quantita-

tive assay in a substantial way.12,13 The process of sampling, tissue handling, and

storage, followed by RNA extraction, is important for a reliable and quantitative

assay. The scientific community has recognized this over the last years, and theAU: Please
clarify
“over the
last years”
here.

preanalytical steps are now gaining more attention. The development of RNA

integrity testing by innovative lab-on-a-chip capillary electrophoresis has made a

particularly big step toward quality control. All pre-PCR steps up to the extracted

total RNA can now be carefully controlled to preserve the quality and integrity

of the RNA material. It is well known that mRNA is sensitive to degradation by

post-mortem processes and inadequate sample handling or storage.14 For a reli-

able quantification we need high integrity RNA that should be preferentially free

of any DNA or inhibitors.15,16 To prevent any RNA degradation, we recommend

the RNAlater R© (Ambion) and PAXgeneTM systems (Qiagen), which were recently

optimized for high-quality total mRNA and microRNA extraction.17 The accuracy

of gene expression evaluation is recognized to be influenced by the quantity and

quality of starting RNA.18 The RNA purity and integrity are the most determining

factors for the overall success of RNA-based quantification. Starting with low-

quality RNA may strongly compromise the results of downstream applications

that are often labor-intensive, time-consuming, and highly expensive.18,19 It is
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therefore important to use high-quality intact RNA, ideally with RNA integrity

numbers higher than five12 as a starting point in quantitative molecular biological

as well as diagnostic applications. In clinical applications with unique and pre-

cious limited tissue material – such as samples obtained after surgery, by biopsy,

or from single cell studies – a reliable RNA quality analysis is necessary.20–22

A second important parameter relating to the pre-PCR step is the RT. It is one

of the most variable reaction steps in the entire quantification assay. Even today,

after the development of recombinant enzyme types with various new properties,

it is the major source of variability. Each reverse transcriptase enzyme has specific

reaction conditions that have to be optimized for each application and primer

pair. The reaction fidelity suffers from differences in RT efficiencies, resulting in

highly variable amounts of synthesized complementary DNA (cDNA) copies.13

For most quantitative applications, Moloney murine leukemia virus (MMLV) H−

RT is the enzyme of choice,23,24 as its cDNA synthesis rate can be up to fifty-

fold greater than that of avian myeloblastosis virus (AMV).25,26 Newly available

thermostable RT enzymes maintain their activity up to 70◦C, thus relieving the

amount of secondary RNA structure during RT and permitting increased speci-

ficity and efficiency of first primer annealing. Each of the enzymes used to gener-

ate cDNA differs significantly with respect to specificity as well as cDNA yield and

variety. Consequently, it is important to realize that RT–PCR results are compara-

ble only when the same priming strategy and reaction conditions are used.13 In

addition, by using mFold software,27 the first primer binding site can be checked

for better mRNA accessibility and the RT reaction step can be optimized to prevent

any false priming.22 To circumvent these high inter-assay variations, an internal

quality control for cDNA synthesis can be used. These internally grown controls

can be artificially, like alien RNA, or naturally occurring reference genes, like

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), albumin, actins, tubulins,

cyclophilin, microglobulins, or ribosomal subunits (18S or 28S ribosomal RNA

[rRNA]).28,29

In summary, the vast efforts made at improving the RT step in terms of

enzyme development, protocols optimizing the preamplification step, and soft-

ware improvements, as well as the RNA integrity testing, have resulted in substan-

tial improvements to the standardization and reliability in the pre-PCR setup.

INVENTIONS MADE IN “ABSOLUTE” QUANTIFICATION ASSAYS

The fidelity of a quantification assay is measured by its specificity, low back-

ground fluorescence, steep fluorescence increase, high amplification efficiency,

and high level plateau. The absolute dynamic range of the detectable fluorescence

(maximal plateau minus background fluorescence) should be maximized in a

quantitative assay. For single PCR product reactions with well-designed primers,

intercalating dyes like SYBR R© Green I work perfectly well, with spurious nonspe-

cific background showing up only in very late cycles.30,31 Among the real-time

detection chemistry, SYBR R© Green I and probe-based TaqMan R© assays produce
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comparable quantification ranges and sensitivities, although SYBR R© Green I

detection is more precise and produces a more linear decay plot than do the

TaqMan R© probes.32,33 Nowadays new intercalating and saturated dyes are avail-

able (SYBR R© GreenER, SYTO R© 9, EvaGreen R©, LCGreen R©, BEBO, BOXTO) that give

higher fluorescence readouts and reduce the risk of primer–dimer formation.34

This [what] has the added advantage that, at least in theory, the sensitivity ofAU: Please
indicate
“This
what?”
here.

the assay should be increased, because Ct acquisition can take place at earlier AU: CT has
been used
throughout
to
abbreviate
“threshold
cycle.” As
meant here?
Please check
throughout
this
chapter.

cycles.

Assay improvements are not solely due to improved dyes and chemistries,

however. A whole range of new polymerase types and mixtures has been intro-

duced to the market. In addition to single polymerase reaction mixes, multiple

polymerase mixes are now available, such as combinations of the classical Taq

polymerase and proofreading polymerases. “Hot start PCR” was already a topic in

the early days of classical block PCR, when we worked with wax to prevent early

reaction start-up at too-low temperatures. Combining PCR components at low

temperatures often leads to nonspecific high backgrounds and low product yield.

Certain PCR enzymes exhibit significant polymerase activity at the typical reac-

tion setup temperatures lower than 25◦C or during the ramping steps. Nonspecific

primer annealing and extension at nonrestrictive temperatures produce undesir-

able products that are amplified throughout the remaining PCR cycles. Today

the polymerase is usually activated via antibody blockage,35,36 through chemical

modifications of the enzyme, or by an inert ligand that detaches immediately

from the active enzyme center of the polymerase when there is an increase in

temperature. The inert ligand has the advantage that the activation step is unnec-

essary; furthermore it has a “Cold Stop” feature (Eppendorf R©; 5-Prime, Germany):

When the temperature drops beneath a critical threshold value during the primer-

annealing step, the inert ligand “binds” onto the polymerase again and deacti-

vates it. Again, improvements to the enzymes themselves are but one aspect of

the improvements made to the qPCR assay. Significant efforts have been made

to optimize buffer conditions to simplify the reaction setup. For example, “self-

adjusting” magnesium (Mg2+) buffers reduce the need for pipetting during PCR

setup, with optimal Mg2+ concentration always present in the tube (Eppendorf R©;

5-Prime, Germany).

Besides these chemical and enzymatic improvements, hardware, plastic ware,

and cycling procedures have been improved significantly. Today the term “rapid

cycling” is a synonym for quicker and better results. The heating and cooling

performances of the blocks have been improved, allowing the shortening of the

“ramping time” between single amplification cycles. Better block surface alloying

and thinner tube materials have led to higher temperature uniformity and con-

duction while cycling. Therefore, the unspecific reaction times have been mini-

mized, resulting in better PCR amplification performance.37 Additional attention

has been paid to seemingly minor items such as tube sealing: Instead of self-

adhesive sealing foil that can result in poor seals of the reaction tube at plate

borders, new automatic heat-sealing methods that use a glue-free and highly

transparent foil guarantee tube-to-tube individual sealed reaction chambers,
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Figure 8–1. Standard curve variability performed with Estrogen Receptor alpha (ERα) single-
stranded plasmid deoxyribonucleic acid (ssDNA). (A), Assay variability using 1,650 to 1.65 billion
ERα ssDNA start molecules and a classical SYBR R© Green I dye (n = 3). (B), One to one billion ERα

start molecules using a new generation intercalating saturated dye (n = 4). Assay variability is
indicated as a percentage. CV, coefficient of variation; cDNA, complementary DNA. AU: Are

these item
names or
company
names listed
with the
countries?

thus preventing any evaporation (Abgene, UK; 4-titude, UK; Eppendorf R©,

Germany).

The improvements made during the last ten years are nicely demonstrated

on an estrogen receptor alpha (ERα) assay developed in 1997.38,39 Both assays

shown were run with the same plasmid DNA standard material using different

kits and platforms, one in 1997 and the other in 2007 (Figure 8–1, a and b). On

the left-hand side, assay variability is plotted using 1.65 × 103 to 1.65 × 109 ERα

single-strand DNA (ssDNA) starting molecules and a classical SYBR R© Green I dye

(n = 3). An assay overall variability of 18.7% was derived in 1997. One decade

later the standard material was run from 1 molecule to 1 × 109 starting molecules

using a new generation intercalating saturated dye. The average variability in four

replicates was 1.45%, which is remarkably low. Furthermore, the assay sensitivity

was ten molecules per reaction tube.

Summarizing this, we can conclude that chemicals and hardware are made

more sensitive and more reproducible while resulting in remarkable reductions

in assay variability.

HOW THE RELATIVE QUANTIFICATION STRATEGY CHANGED

Alongside the “absolute” quantification according to a given standard curve, rel-

ative quantification has been of particular interest to all areas of physiological

science. Relative quantification in qRT–PCR is easier to perform than the abso-

lute assay setup, because a calibration curve is not necessary. It is based on the

expression levels of a target gene versus one or more reference genes (sometimes

called housekeeping or internal control genes). It is adequate for most purposes
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to investigate minor physiological changes in gene expression levels.40,41 The

units used to express relative quantities are irrelevant, and the relative quantities

can be compared across multiple real-time RT–PCR experiments.42 Relative quan-

tification setup determines the changes in steady-state mRNA levels of a gene

across multiple samples and expresses it relative to the levels of an internal con-

trol RNA. This reference gene can be coamplified in the same tube in a multiplex

assay or can be amplified in a separate tube.43 Therefore, relative quantification

does not require standards with known concentrations, and the reference can be

any transcript, as long as its sequence is known.44

The calculation of the expression changes will be measured by mathemati-

cal algorithms that are based on the “delta delta Ct method,” established orig-

inally by Livak and Schmittgen.45 Calculations rely on the comparison of the AU: should
values be
“cycles”?

distinct cycle, such as threshold values (Ct) at a constant level of fluorescence

or Ct acquisition according to established mathematic algorithms.46,47 To date,

several quantification models that calculate the relative expression ratio have

been developed. Relative quantification models with and without efficiency cor-

rection use single or multiple reference genes for normalization are available

and published (summarized by Pfaffl10). According to such ratio calculationAU: Please
clarify the
sentence
beginning
“Relative
quantifica-
tion
models...”

models, appropriate software applications were developed, such as LightCycler R©

Relative Quantification Software (Roche Applied Science),48 QGene,49 Relative

Expression Software Tool (REST),50 SoFar,51 Data Assimilation Research Testbed

(DART),52 qPCR–data analysis and management system (qPCR–DAMS),53 and

Qbase R©.54 AU: Please
verify all
expansions
in this
paragraph.

The application of such algorithms that calculate PCR efficiency on a single PCR

run basis has been shown to be important for the generation of correct results.18,47

Therefore, PCR efficiency corrections are being included in new relative quan-

tification software (e.g., REST 2008; http://REST.gene-quantification.info/). It is

desirable that the real-time qPCR software applications should calculate auto-

matically the qPCR efficiency and implement it in proven relative quantification

modules.10

WHAT ABOUT PCR EFFICIENCY?

All qPCR methods, absolute and relative, assume that the target and the sample

amplify with similar efficiency,45 but we know that is not the case! Unfortu-

nately, unknown samples may contain substances that significantly reduce the

efficiency of the RT12 as well as in the PCR.55 As discussed, sporadic RT and PCR

inhibitors or different RNA/cDNA distributions can occur. A dilution series can

be run on the unknown samples, and the inhibitory factors often can be diluted

out, causing a nonlinear standard curve.56,57 Individual samples can generate

different fluorescence histories in real-time RT–PCR. The shapes of amplification

curves differ in the steepness of any fluorescence increase and in the absolute

fluorescence levels at plateau depending on background fluorescence levels. The

PCR efficiency has a major impact on the overall fidelity as well as accuracy of
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the assay, and is critically influenced by PCR components. Efficiency evaluation

is an essential marker in gene quantification procedure.47 AU: Is “the
gene quan-
tification
procedure”
or “gene
quantifica-
tion
procedures”
meant here.

A correction for efficiency, as performed in efficiency-corrected mathematical

models, is strongly recommended and results in a more reliable estimation of the

“real expression ratio” compared to no efficiency correction.55 Small efficiency

differences between target and reference gene generate false expression ratios,

and the researcher over- or underestimates the “real and initial” mRNA amount

present in the biological sample (LightCycler R© Relative Quantification Software;

Roche Applied Science).48

To conclude, quantitative efficiency corrections should be included in the

automation and calculation procedure in relative quantification models, and are

a major goal for the future in real-time PCR cycler and software development.

ASSAY VARIANCE AND HOW TO PERFORM A PROPER NORMALIZATION

It is important to realize that any measured variation in gene expression between

subjects is caused by three sources: (1) processing variance that occurs while sam-

pling and during the RT and PCR reactions, which must be minimized by using

more replicates and by normalization with internal standards; (2) individual bio-

logical variance, which can be minimized by repeated measurements of RT and

PCR reactions and by an additional normalization to an untreated control group;

and (3) treatment variance.

The processing variance occurs while sampling, during RT, and during the PCR.

This variance can be minimized by using multiple replicates and by normaliza-

tion with internal standards, such as reference genes. The individual biological

variance can be minimized by repeated measurements at RT and PCR levels and

by an additional normalization to an untreated control group. In contrast, there

is the treatment variation, explaining the phenotype or underlying phenomenon

under investigation. This variance should be reduced by random sampling and

by taking a large number of biological samples.

One major hurdle in real-time PCR gene expression studies is the removal

of this experimentally induced nonbiological variation from the true biologi-

cal variation. As shown before we are on the right path, but there is still some

undefined assay variability left. There are several strategies to remove experi-

mentally induced variation, each with its own advantages and considerations.58

We can reduce reaction noise through normalization by controlling as many of

the confounding variables as possible.29 Although most of these methods cannot

completely reduce all variance sources, it has been shown to be very important to

control all the sources of variation along the entire PCR workflow.59 If one does AU: Is
“during the
entire PCR
process”
meant here?

not meticulously try to standardize each step, variation can and will be intro-

duced in the results and cannot be fully eliminated by applying normalization

by reference genes.13

Although the use of reference genes for normalization of gene expression lev-

els is certainly the “gold standard,” some new ideas for normalization have been
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recently developed.58 The quality of normalized quantitative expression data

cannot be better than the quality of the normalizer itself. Any variation in the

normalizer will obscure real changes and produce artifactual changes.44 Real-

time RT–PCR–specific errors in the quantification of mRNA transcripts are easily

compounded with any variation in the amount of starting material between the

samples, for example, caused by sample-to-sample variation, variation in RNA

integrity, RT efficiency differences, and cDNA sample loading variation.18,24,25

Normalization of target gene expression levels must be performed to compensate

for intra– and inter–RT–PCR variability (sample-to-sample and run-to-run varia-

tions). Therefore, data normalization by more than one reference gives much

more reliable results.60 Vandesompele and colleagues recommended using at

AU: Should
reference 29
citation be
added here
at Vandes-
ompele?

least three nonregulated references to perform a proper normalization. A set

of candidate reference genes has to be performed on all biological samples under

investigation, and a reliable test to determine the most stable reference must be

performed. This can be done by various software applets available: geNorm,29

BestKeeper,60 or Qbase software.54 It still remains up to the individual investiga-

AU: Please
review this
text. “A set
... has to be
per-
formed...”
as meant?

tor to choose appropriate reference gene(s) that are best for normalization in the

particular experimental setting. Over the years a panel of optimal references have

been reported, which are more or less stable under specific biological treatments.

Also the idea of Global Pattern Recognition (GPR) was developed to evaluate

expression changes in real-time PCR data.61 By comparing the expression of each

gene to every other gene in the array, a global pattern was established, and signif-

icant changes are identified and ranked. GPR makes use of biological replicates to

extract significant changes in gene expression, providing an alternative to relative

normalization in real-time PCR experiments.

To summarize, the normalization strategy using software applets is prerequi-

site for accurate quantification of RT–PCR expression profiling, which opens up

the possibility of studying the biological relevance of even small mRNA expres-

sion differences. The proper normalization process revolutionized the relative

quantification in real-time RT–PCR, and guided us to a more reliable result.

EXPRESSION PROFILING, qPCR BIOINFORMATICS,
AND STATISTICAL ANALYSIS

In research and in clinical diagnostics, real-time qRT–PCR is the method of choice

for expression profiling. Enormous amounts of expression Ct data are created.

However, accurate and straightforward mathematical and statistical analysis of

qPCR data and management of growing data sets have become the major hurdles

to effective implementation.62 Nowadays up to 96- and 384-well applications are

the standard in research, but in the near future high-throughput applications

with more than thousand PCR spots will generate huge amounts of data. Various AU: Is
“more than
1,000”
meant here?

qPCR data sets need to be grouped, standardized, normalized, and documented

by intelligent software applications.54 The main challenge remains the mathe-

matical and statistical analysis of the enormous amount of data gained, as these
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functions are not included in the software provided.49 The so-called bioinformat-

ics and biostatistics on real-time RT–PCR experimental data are highly variable,

because various procedures are possible, involving different ways of performing

background correction, threshold settings, or expression normalization. The pos-

sibilities in performing data analysis are nearly infinite! Many questions arise:

Which one is the right analysis method? Can I use my generated data? Which

one gives the best results, in terms of significance? Which one gives realistic

results, in terms of the biological question? Which statistical test is the right one?

Prior to normalization or statistical testing, real-time qPCR data should be

analyzed by automated verification methods, such as Kinetic Outlier Detection

(KOD), to detect outliers and samples with dissimilar efficiencies.63,64

Later statistical testing in mRNA gene quantification is nowadays mainly per-

formed on the basis of classical standard parametric tests, such as analysis of

variance or t tests (summarized by Pfaffl10). Parametric tests depend on assump-

tions, such as normality of distributions, the validity of which is unclear.49,65

When performing relative quantification analysis, where the quantities of inter-

est are derived from expression ratios, assay variances might be high, normal

distributions might not be expected, and it is unclear how a parametric test

could be applied.50 Up to now two available software packages support statisti-

cal analysis of expression results: QGene49 and REST.50 Both work on the basis

of Visual Basic applets on the basis of Excel (Microsoft). In QGene, rapid and

menu-guided performance of frequently used parametric and nonparametric sta-

tistical tests is provided. In REST, permutation or randomization tests are applied

as alternatives to more standard parametric tests for analyzing experimental data.

Both tests have the advantage of making no distributional assumptions about the

data, while remaining as powerful as more standard tests, and are instead based

on our knowledge that treatments were randomly allocated.66

WHAT IS NEXT IN REAL-TIME PCR?

During the next years, new PCR applications and improvements will be devel- AU: “In the
near
future”
meant here?

oped, both on the chemical and the hardware sides. Very interesting is the inven-

tion of high-throughput applications – even more than 384-well applications67 –

and digital PCR. Digital PCR represents a powerful example of PCR and

provides unprecedented opportunities for molecular diagnostics, either on DNA

or RNA levels. The technique is to amplify single DNA or RNA templates from

highly diluted samples, therefore generating PCR products that are derived from

one template. Thus, digital PCR transforms the exponential and analog signals

obtained from conventional PCR to linear digital signals, allowing statistical anal-

ysis of the PCR product. Digital PCR has been applied in various applications for

mutant detection, but offers high impact in future molecular diagnostics.68,69 AU: Please
clarify
“offers high
impact”
here.

In this section I want to focus on the new data analysis methods and how these

models will help us generate more useful information from multiple gene expres-

sion data.70 First we need a powerful concept and, of course, a set of algorithms to
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Wheat bran

Pine pollen

Control

Figure 8–2. Multidimensional regression analysis via a three-dimensional scatter plot of daily
intake, daily gain, and area of follicles in lymph node. Three different feeding regimens were
investigated: wheat bran, pine pollen, and untreated control group. See color plates.

analyze extensive experimental expression data in parallel. Why? Suppose we pre-

tend that our goal is to detect hidden interactions or correlations between genes.

We may want to determine whether genes A and B are more influenced by our

applied treatment than are genes C or D. A qPCR expression-profiling experiment

generates a Ct value for each gene in each sample, thus recording the transcrip-

tional activity of that gene in that particular sample. Although these data pro-

vide valuable and accurate information about the transcriptional response of the

studied system, an even more powerful experimental design would incorporate

an additional third parameter such as treatment time, applied treatment concen-

tration, or type of treatment. Such studies generate so-called three-dimensional

data sets (Figure 8–2) that are exceedingly informative and give more insight into

the interaction of genes A and B over the parameter C.71

To analyze more data sets from an expression-profiling experiment, we need

highly sophisticated algorithms, like cluster analysis,72 which has been long

established in the analysis of DNA array experiments, where thousands of data

points have to be compared in parallel.73,74 Gene expression clustering allows

open-ended exploration of the data, without getting lost among the thousands

of individual genes. Beyond simple visualization, there are also some important

computational applications for gene clusters. The goal of clustering is to sub-

divide a set of items (in our case, genes) in such a way that similar items fall

into the same cluster, whereas dissimilar items fall into different clusters.70 This AU: Please
indicate
“This
what?”
here.

[what] brings up three questions: (1) How do we decide what is similar – that is,

which genes are similarly regulated? (2) How do we use this to cluster the items?

(3) How do the different treatments cluster?

The fact that these questions often can be answered independently contributes

to the bewildering variety of clustering algorithms. In hierarchical clustering, all

information in the data is accounted for, but the data are analyzed sequentially,
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which means that not all information is considered at the same time.70 The dis-

tance between two samples in the multidimensional space is typically calculated

as the Euclidian shortest distance, by the Ward’s algorithm,75 or by a ranked

correlation approach.76

mRNA transcripts from different genes often share similar expression patterns.

Ma and colleagues77 developed an approach to reveal related gene expression

patterns. The smoothing spline clustering (SSC) algorithm models natural prop-

erties of gene expression over time, taking into account natural differences in

gene expression.

To summarize, the described three-way dimensional and cluster analysis opensAU: “three-
dimensional”
meant here?
Also, keep
‘analy-
sis...analyze”
in this
sentence?

the way to analyze and compare gene expression data in a multidimensional

fashion. It creates gene groups, treatment groups, or groups of patients with

similar mRNA regulation patterns and will give us much more information than

will the classical gene-to-gene comparison.

GENE EXPRESSION AND MORE – THE SYSTEM BIOLOGY IDEA

Cluster analysis of gene expression data by three-dimensional data sets or by SSC

is attractive, but we need even more sophisticated approaches. We do not sim-

ply wish to compare the gene expression data; what we are really interested in

is the comparison between the applied treatment and the biology. This means

incorporating a whole range of additional parameters, such as genetic, protein,

and metabolic data sets from our samples (Figure 8–3). To visualize this, a nutri-

tion study in forty-five piglets will be presented.78 Herein the gene expression

data (Ct values) from various marker genes (apoptotic, cell-cycle, metabolic, pro-

and anti-inflammatory markers), investigated in multiple organs (liver, stomach,

jejunum, ileum, colon, lymph node, white blood cells), were implemented and

compared with growth parameters (daily intake and daily gain, feed digestibility,

feed conversion) as well as morphological data (length and width of villi, size of

Peyer plates, various parameters from the lymph node morphology). Even more

data sets, such as metabolic and bacterial counts in the gastrointestinal tract

(GIT), will be implemented when available. All data were analyzed using GenEx

software (http://www.multid.se).79

How is it possible to analyze hundreds of data sets that came from different

measurement sources? How can we equilibrate all the data to make them com-

parable?

All data are measured by different analytical methods and therefore have dif-

ferent physical units. How we can bring these different data sets together and

generate a complete readout to draw conclusions on treatment efficacy?

To do so, raw data should be autoscaled. Autoscaling is a well-established

mathematical conversion that results in data sets of each parameter with the

mean value of zero and the standard deviation of one (Figure 8–4). Autoscaling

makes the expression data analysis robust.70 Finally, all 107 data sets – that is,

107 different physiological parameters – from 45 animals underwent a parallel
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Gene expression data

[Ct‘s, relative expression, 
normalized or non-normalized Ct]

various Organs

[liver, stomach, jejunum, 

ileum, colon, LN, WBC]
Morphological data

[length and width of villi, size PP, 
size LN, number LN, number LF]

Feed and Growth parameters

[daily intake, daily gain, feed conversion, 
DM and XP digestibility]

Bacterial flora in GIT

[E. coli, Enterobacteria,

Bifidobacteria, Clostridia, 
Lactobacillus, etc…..]

Metabolic data
[NH3 and lactate concentration,
pH value, DM content in GIT]

BIOLOGY
SYSTEM

Figure 8–3. Multiple comparison of gene expression data in various organs, feed parameters,
growth parameters, and morphological data (metabolic and bacterial) for a piglet feeding study
for development of a system biology approach. See color plates.

4.0

2.0

0.0

-2.0

-4.0

Figure 8–4. Autoscaled data set from 107 parameters in 45 piglets.
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Liver
Cluster 1

Liver
Cluster 2

Liver
Stomach

Cluster

Immunity
Cluster 1

(Ileum,
Lymph node,
digestibility)

WBC
Cluster

GIT
Cluster

(Colon,
Jejunum,

Feed)

Immunity
Cluster 2

(Colon morphology,
Lymph node)

Growth
Cluster

(intake, gain,
Jejunum & Ileum

morphology) 

 

cluster
analysis

Figure 8–5. Dendrogram as result of cluster analysis. Various data sets cluster in main cluster
and subcluster. WBC, white blood cell. See color plates.

cluster analysis. Figure 8–5 shows a dendrogram of the applied study. The dendro-

gram shows various main clusters, and of course subclusters, which correspond

to genes expressed in distinct tissues, such as liver (Figure 8–6) or GIT, or belong

to a functional group. As an example, many genes expressed in the liver group

together, showing that gene expression is not solely regulated gene by gene. Fur-

thermore, there is greater coherence between the individual tissues, and there is

further regulation on the tissue level as well.

In immunity cluster 1, the cluster algorithm grouped the following parame-

ters: immunological marker genes expressed in the ileum, lymph node relevant

parameters, and feed parameters such as digestibility of dry matter and crude pro-

tein content (Figure 8–6). Here a direct conclusion about the overall correlation

between gene expression data, morphological appearance in the GIT, and feed

properties can be drawn. Furthermore, the growth cluster (Figure 8–7) functioned

as a proof of concept. Within all 107 data sets the software conspicuously grouped
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Figure 8–6. Dendrogram of liver and immunity subclusters. All liver genes cluster together in
the upper part. Gene expression of immunological marker genes in the ileum, lymph node mor-
phology, dry matter, and crude protein digestibility cluster clearly together (blue frame). See color
plates.

Figure 8–7. Dendrogram of growth cluster and immunity subclusters. See color plates.
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side by side morphological data from jejunum and ileum (length, width, and area

of the villi). This [what] shows us that cluster analysis works and generates no AU: Please
indicate
“This
what?”
here.

fictitious and meaningless results. Importantly, within the growth cluster mor-

phological data correlate highly with feed intake, daily gain, and the area of the

lymph follicles in the ileal mesenterial lymph node.

Compared to cluster analysis, other algorithms are known to detect hid-

den structures between genes and other parameters. The idea behind the self-

organizing map method80 is to reflect variations in the expression profiles as a

collection of cells, each with a representative expression profile, that are arranged

to form a map with smooth changes in the profiles. When the expression profiles

of the samples are located on the map, similar samples will be found close to

each other.70 In some situations the detailed expression pattern also can have

prognostic value. Traditionally expression profiles are measured using microar-

rays, by which the expression of all genes can be assessed in a single experiment.

However, the quality of microarray expression data usually is not good enough

for detailed classification and accurate prognosis.70 Real-time PCR gives much

more information, is more sensitive, has a wider dynamic range, and has higher

reproducibility.10,42

CONCLUSION

During the past two decades, important advances have been introduced, making

quantification much more reliable. Improvements have been made in preana-

lytical steps, detection chemistry, applied dyes, quantification strategy, software

application, and instrumentation. These improvements have led to the develop-

ment of sensitive and stable assays whereby mRNA transcripts can be quantified in

high throughput and precisely in a short time. The benefits in terms of increased

sensitivity, reduced variability, reduced risk of contamination, increased through-

put by automation, and meaningful data interpretation are obvious, even beyond

gene expression data.
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