
How microRNAs control cell division, differentiation and death
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After the milestone discovery of the first microRNA in 1993, the

past five years have seen a phenomenal surge of interest in

these short, regulatory RNAs. Given that 2% of all known

human genes encode microRNAs, one main goal is to uncover

microRNA function. Although it has been more difficult to

assign function to microRNAs in animals than it has been in

plants, important roles are emerging: in invertebrates,

microRNAs control developmental timing, neuronal

differentiation, tissue growth and programmed cell death.

Functional studies in zebrafish and mice point toward important

roles for microRNAs during morphogenesis and

organogenesis. Finally, microRNAs might regulate viral

infection and human cancer.
Addresses

Wellcome Trust/Cancer Research UK Gurdon Institute and

Department of Biochemistry, University of Cambridge, The Henry

Wellcome Building of Cancer and Developmental Biology,

Tennis Court Road, Cambridge, CB2 1QN, UK

Corresponding author: Miska, Eric A (e.miska@gurdon.cam.ac.uk)
Current Opinion in Genetics & Development 2005, 15:563–568

This review comes from a themed issue on

Differentiation and gene regulation

Edited by Tony Kouzarides and Andrew J Bannister

Available online 15th August 2005

0959-437X/$ – see front matter

# 2005 Elsevier Ltd. All rights reserved.

DOI 10.1016/jgde.2005.08.005

Introduction
Interest in the genes controlling developmental timing in

the roundworm Caenorhabditis elegans [1–3] led to the

cloning of the first microRNA, lin-4, [4] and the identi-

fication of the first microRNA target, lin-14 [5]. The

cloning of a second microRNA, let-7, which is involved

in the same pathway in C. elegans [6], and the realization

that let-7 was conserved from worms to mammals [7] led

to the identification of many microRNAs in worms, flies,

mammals and flowering plants, using cloning and pre-

diction strategies [8–12]. MicroRNAs are short, �22

nucleotide, non-coding RNAs that are thought to

regulate gene expression through sequence-specific

base-pairing with their targets. The precise number of

microRNA genes in the human genome is still unknown,

but current estimates range from 500 to 1000 [13]. This

review focuses only on animal microRNAs; the roles of

microRNAs in plants have been reviewed recently else-

where [14,15].
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MicroRNA biogenesis and mechanisms of action

MicroRNA genes are found in intergenic regions as well

as in introns. When located within introns, they can be on

either the coding or the non-coding strand. Co-regulation

of microRNAs and their host genes has been observed in

some cases [16]. The majority of microRNA genes are

probably transcribed by RNA polymerase II. Primary

microRNA (pri-miRNA) transcripts can be hundreds of

bases to several kilobases in length and might contain a

single (monocistronic) or several (polycistronic) miRNAs.

Pri-miRNAs have a 50 7-methylguanosine cap and a

30-polyadenosine tail, and they might or might not contain

introns that are spliced. For a detailed review of micro-

RNA transcription, see [17].

Pri-miRNAs contain �80-nucleotide stem–loop struc-

tures, named pre-miRNAs, with the mature miRNAs

located on at least one of their arms. In the nucleus,

pre-miRNAs are processed from pri-miRNAs by the

RNase III enzyme Drosha and DGCR8/Pasha [18–22]

and are exported to the cytoplasm by a mechanism that

involves Exportin-5 [23]. In the cytoplasm, a second

RNase III enzyme, Dicer, cuts the pre-miRNA to gen-

erate the mature microRNA as part of a short RNA

duplex. This RNA is subsequently unwound by a helicase

activity and incorporated into an RNA-induced silencing

complex (RISC). Detailed reviews of microRNA biogen-

esis can be found elsewhere [17,24–27].

The mature microRNA is chemically identical to small

interfering RNAs (siRNAs; see Glossary) that are gener-

ated during RNA interference (RNAi; see Glossary); for

example, in experimental conditions and during viral

infection (Figure 1). Although most microRNAs in animals

are thought to function through the inhibition of effective

mRNA-translation of target genes through imperfect base-

pairing with the 30UTR (30 untranslated region) of target

mRNAs [25], the underlying mechanism is poorly under-

stood. In addition to this ‘classic’ mechanism, at least one

microRNA, miR-196, can cleave a target mRNA, HOXB8,

in a similar fashion to cleavage by siRNA [28�,29]. Micro-

RNAs might also play a role in AU-rich element-mediated

mRNA degradation [30�]. Finally, the involvement of

microRNAs in transcriptional gene-silencing, which has

been observed in plants, remains a possibility [14,31].

This review describes the recent advances in understand-

ing microRNA function in animals. As this is very much a

work in progress, I also point out new strategies to further

our understanding of microRNA biology. All those animal

microRNAs for which a function has been demonstrated

in vivo are listed in Table 1. Table 2 summarizes all
Current Opinion in Genetics & Development 2005, 15:563–568
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Glossary

Exocytosis: Release of proteins and neurotransmitters, etc, from

cells by the fusion of vesicles with the plasma membrane.

RNA interference (RNAi): Sequence-specific mRNA-degradation

pathway. Requires small interfering RNAs to target specific

mRNAs.

Small interfering RNAs (siRNA): Short, single-stranded RNAs of

approximately 22 nucleotides that can cause the degradation of

target mRNAs by perfect base-pairing with their target.

Target prediction: Bioinformatic approach to predict microRNA

targets on the basis of sequence complementarity of microRNAs and

microRNA binding sites in 30UTRs of target mRNAs.
microRNAs for which a biological role has been proposed

and substantiated by indirect means.

Roles of microRNAs in invertebrates
The developmental timing (heterochronic) pathway in C.

elegans involves at least two microRNAs, lin-4 and let-7.

Both lin-4 and let-7 are required for endothelial cell fate

decisions during larval development [1,2]. When lin-4 or

let-7 is inactivated, specific endothelial cells undergo

additional cell divisions instead of their normal differen-

tiation. The two known target genes of lin-4, lin-14 and

lin-28, were identified through genetic interaction studies

(see Table 1) [4,5,32]. This is also the case for the first two

known let-7 target genes, lin-41 and hbl-1 [33–35]. More

recently, two additional let-7 target genes, the transcrip-

tion factor genes daf-12 and pha-4, were identified with a

combination of target prediction (see Glossary) using

bioinformatics and RNAi [36��]. A let-7-related micro-

RNA, miR-84, was recently identified as a putative reg-

ulator of vulval development in C. elegans (see Table 2)
Figure 1

Multiple roles for short RNAs. Primary microRNA gene transcripts contain s

enzyme Dicer to give rise to the mature microRNA. Dicer is also required fo

siRNAs during RNAi. Mature microRNAs and siRNAs are chemically indistin

translational inhibition, mRNA degradation and transcriptional gene-silencing

thought to inhibit effective target mRNA translation; however, microRNAs m
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[37]. miR-84 is proposed to act through let-60, a RAS
homologue [37]. MicroRNAs are also regulators of neuro-

nal differentiation in C. elegans. The microRNA lsy-6 is

required for asymmetrical expression of a putative taste-

receptor in a pair of sensory neurons, ASEL and ASER

[38]. The lsy-6 microRNA target is the Nkx-type homeo-

box gene cog-1. Both lsy-6 and cog-1 were identified in

forward genetic screens for loss of asymmetry of ASEL and

ASER. Interestingly, a second microRNA, miR-273, might

act upstream of lsy-6 and cog-0031 as a direct regulator of

die-1, which also encodes a transcription factor [39].

The first microRNA to be identified in the fruit fly,

Drosophila melanogaster, is encoded by the bantam locus,

which had previously been identified in a screen for de-

regulated tissue growth [40]. The bantam microRNA

stimulates cell proliferation and reduces programmed cell

death. It directly regulates the pro-apoptotic gene hid/
wrinkled. A second D. melanogaster microRNA, miR-14,

also suppressed programmed cell death [41]. Its target(s)

remain to be determined. Additional roles for microRNAs

in D. melanogaster can be inferred from conserved regu-

latory motifs in the 30UTRs of Notch target genes, termed

GY-, Brd- (Bearded) and K-boxes, and from microRNAs

with complementarity to these motifs [42]. Candidate

microRNAs regulating these motifs include miR-2, miR-

4, miR-5, miR-6, miR-7, miR-11 and miR-79 [42–45].

Roles of microRNAs in vertebrates
Little direct evidence for in vivo roles for vertebrate

microRNAs has been obtained to date. Not a single
tem–loop structures (pre-miRNAs) that are processed by the RNase III

r the processing of double-stranded viral RNA and for generating

guishable. Short RNAs are thought to have three modes of action:

at the level of chromatin. In animals, most microRNAs are

ight use all three mechanisms to regulate target-gene expression.
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Table 1

Animal microRNAs for which a function has been demonstrated in vivo.

MicroRNA Known targets Organism Biological process Cellular process References

lin-4 microRNA lin-14, lin-28 C. elegans Developmental timing Differentiation/proliferation [4,5,32]

let-7 microRNA lin-41, hbl-1, daf-12, pha-4 C. elegans Developmental timing Differentiation/proliferation [6,33–35,36��]

lsy-6 microRNA cog-1 C. elegans Left-right asymmetry Differentiation [38]

bantam microRNA hid D. melanogaster Growth control Proliferation/programmed cell death [40]

miR-14 Unknown D. melanogaster Programmed cell death Programmed cell death [41]

miR-4301 Unknown Drosophila rerio Neurogenesis Unknown [46��]

This table includes only those microRNAs that have been analyzed using loss-of-function studies. Functional roles for a number of other microRNAs

have been inferred from overexpression and mis-expression studies; these data are summarized in Table 2. 1miR-430 function was inferred from

rescue experiments in a Dicer-mutant background.
microRNA knockout has been reported. However, in

zebrafish (Danio rerio) experiments in which both mater-

nal and zygotic Dicer product was removed, re-introduc-

tion of a single microRNA, miR-430, led to a dramatic

improvement of severe brain morphogenesis defects

[46��]. This observation suggests an important function

for miR-430, or a related microRNA, in brain morphogen-

esis in the zebrafish.

In the mouse, miR-181 has been implicated in haema-

topoietic lineage differentiation, and overexpression of

miR-181 leads to an increase in B lymphoid cells in vitro
and in vivo [47]. miR-375, which is specifically expressed

in mouse pancreatic islet cells, might regulate insulin

secretion at the level of exocytosis (see Glossary) [48].

Myotrophin was identified as one direct target for miR-375.

Finally, the miR-17 microRNA cluster and miR-32 have

been linked to human disease and are discussed below

[49,50��].

A role for microRNAs in human disease:
cancer and viral infection
A potential involvement of microRNAs in human disease

might be inferred from the biological roles of microRNAs

reported to date. Indeed, the lin-4 and let-7 phenotypes

observed in C. elegans can be interpreted as proliferative
Table 2

Proposed in vivo roles for additional microRNAs in animals.

MicroRNA Targets Organism

miR-273 die-1 C. elegans

miR-84 let-60 C. elegans

miR-2a, -2b, -6, -7 E(spl)/bHLH, Bearded families1 D. melanogas

miR-181 Unknown Mus musculus

miR-375 Myotrophin (Mtpn) M. musculus

miR-17, -18, -19a, -20,

-19b-1, -92-1

Unknown M. musculus

miR-32 PFV-1 Homo sapiens

This table lists microRNAs for which a probable function has been de

experiments. This table does not contain microRNAs for which a target mRN

but for which no further functional characterization at the cellular or organism

can be found elsewhere [36��,43–45,70�]. 1Family of Notch target transcripti

helix–loop–helix; PFV-1, primate foamy virus type 1.
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defects [1,2], and the roles of bantam and miR-14 in D.

melanogaster also point to defects in proliferation [40,41].

Therefore, one might speculate that microRNAs might be

de-regulated in proliferative diseases, such as cancer.

Indeed, a large number of microRNAs appear to be de-

regulated in primary human tumours [50��,51,52,53�], and

many human microRNAs are located at fragile sites and

genomic regions involved in cancer [54,55]. Of particular

interest is the miR-17 microRNA cluster, which is in a

region on human chromosome 13 that is frequently ampli-

fied in B-cell lymphomas [50��]. Over-expression of the

miR-17 cluster was found to co-operate with c-Myc to

accelerate tumour development in a mouse B-cell lym-

phoma model. Although the direct targets of members of

the miR-17 cluster of microRNAs are unknown, their

collective role might be to inhibit excessive programmed

cell death [50��]. In a separate study, the miR-17 cluster

was found to be up-regulated by over-expression of c-Myc,

leading to the de-regulation of E2F1 expression [56�].

Another link between microRNAs and human disease

comes from the identification of microRNAs encoded by

large DNA viruses of the herpesvirus family, including

the Epstein-Barr virus [57,58�]. These viral microRNAs

have no apparent homologues in host genomes, and their

function is currently not understood. Conversely, a cel-

lular microRNA, miR-32, was shown to play an important
Biological process Cellular process References

Left–right asymmetry Differentiation [49]

Vulval development Differentiation/proliferation [37]

ter Notch signalling Unknown [42–45]

Hematopoeisis Differentiation [47]

Insulin secretion Exocytosis [48]

Tumourigenesis Proliferation [50��]

Viral defense Viral defense [49]

monstrated using an indirect approach, for example mis-expression

A has been predicted and validated using over-expression experiments

al level has been carried out. Additional validated microRNA–target pairs

on factors with GY-, Brd- and K-box motifs. Abbreviations: bHLH, basis
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role in regulating the proliferation of the primate foamy

virus type 1 (PFV-1) in cell culture [49].

Approximating microRNA function through
the analysis of Dicer mutants
The RNase III enzyme Dicer is essential for the proces-

sing of microRNAs and for RNAi. Therefore, the analysis

of Dicer-knockout strains might point toward biological

roles of microRNAs, with the caveat that RNAi and

possibly other biological processes might be de-regulated.

Dicer was first analyzed genetically in C. elegans (dcr-1), in

which it was found to be essential for germline develop-

ment [59]. It is likely that maternal contribution of dcr-1
masks earlier phenotypes, and this notion is supported by

additional phenotypes that are revealed by the inactivation

of dcr-1 using RNAi [60]. RNAi of dcr-1 results in embryo-

nic and developmental timing defects that are reminiscent

of lin-4 and let-7 mutants [60], thereby suggesting addi-

tional roles for microRNAs in C. elegans development.

In the zebrafish, a knockout of the Dicer1 gene leads to a

developmental arrest 7 to 10 days post-fertilization [61].

An earlier role for Dicer is probably masked by maternal

Dicer contribution. Indeed, removal of maternal Dicer by

the generation of germ line clones leads to more severe

defects: axis formation and early differentiation are nor-

mal, but gastrulation, brain formation, somitogenesis and

heart development are abnormal [46��].

Dicer-mutant mice have defects in axis formation and

gastrulation, are depleted of stem cells and die at around

7.5 days of gestation [62]. A conditional knockout of Dicer
early during T-cell development suggests a role for micro-

RNAs in ab-cell lineage [63]. Finally, a knockout of Dicer
in the chicken–human hybrid DT40 cell line suggests a

role for the enzyme in heterochromatin formation [64].

Approximating microRNA function through
mRNA target prediction
MicroRNA target prediction offers an attractive route to

the discovery of microRNA function. Several algorithms

have been applied to C. elegans, D. melanogaster and

mammalian genomes to predict microRNA targets

[43,44,65–69]. In a complementary effort, conserved sites

in 30UTRs of human genes have been identified [70�].
For a subset of these predictions, the use of overexpres-

sion and green fluorescent protein- or luciferase-reporter

assays has demonstrated that the microRNA can regulate

the target candidate. It remains an open question as to

how many microRNA targets that have been verified in

these heterologous systems are important targets in vivo.

Approximating microRNA function through
expression analysis
Initially, microRNA expression was monitored using

northern blotting [4]. Next, cloning of microRNAs from

specific tissues was used to approximate expression levels
Current Opinion in Genetics & Development 2005, 15:563–568
[71]. Over the past two years, microRNA microarray

technologies have been developed for the high-through-

put profiling of microRNA expression [15,52,53�,72,73].

The most exciting discovery to date is that many micro-

RNAs are tissue-specifically expressed. It is to be

expected that microRNA expression profiles will help

to guide functional studies, as exemplified by the analysis

of the pancreatic islet-specific microRNA miR-340 [48].

Finally, the recent development of microRNA in situ
technology has the potential to revolutionize microRNA

expression analysis [74��].

Conclusions
We are just beginning to unravel the roles of microRNAs in

animals, but the examples listed here already demonstrate

the great importance of this class of short RNAs. Many of

the functions elucidated to date point to important roles for

microRNAs in cell fate determination, including the con-

trol of cell division, differentiation and death. Few loss-of-

function studies have been reported to date, but the tool

kit is expanding with devices for global de-regulation of

microRNAs (Dicer knockouts), target predictions and

expression patterns at our disposal. The most exciting

time for microRNAs lies ahead.
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