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In the long evolutionary history, plant has evolved elaborate regulatory network to control functional gene expression for surviving and
thriving, such as transcription factor-regulated transcriptional programming. However, plenty of evidences from the past decade studies
demonstrate that the 21–24 nucleotides small RNA molecules, majorly microRNAs (miRNAs) play dominant roles in post-transcriptional
gene regulation through base pairing with their complementary mRNA targets, especially prefer to target transcription factors in plants.
Here, we review current progresses on miRNA-controlled plant development, from miRNA biogenesis dysregulation-caused pleiotropic
developmental defects to specific developmental processes, such as SAM regulation, leaf and root system regulation, and plant floral
transition. We also summarize some miRNAs that are experimentally proved to greatly affect crop plant productivity and quality. In
addition, recent reports show that a single miRNA usually displays multiple regulatory roles, such as organ development, phase transition,
and stresses responses. Thus, we infer that miRNAmay act as a node molecule to coordinate the balance between plant development and
environmental clues, which may shed the light on finding key regulator or regulatory pathway for uncovering the mysterious molecular
network.
J. Cell. Physiol. 231: 303–313, 2016. � 2015 Wiley Periodicals, Inc.

The regulation of gene expression is the basis of various
biological phenomena, and thus creates our colorful plant
kingdom and provides our daily food. Generally, functional
protein-coding genes are elaborately controlled by different
kinds of tans-acting factors, such as transcription factors. Thus,
there is no doubt that there have been plenty of evidences
indicating that transcription factors are the major coordinator
in plant growth and development, stress responses, and the
crosstalk in different signal transduction pathways (Devaiah
et al., 2007; Rushton et al., 2010; Xiao et al., 2013; Fan et al.,
2014; Li et al., 2014a).

microRNAs (miRNAs), a kind of widespread small
endogenous RNAs ranging from 20 to 24 nucleotides in length,
are proved to be a crucial regulator in post-transcriptional gene
regulation through translational repression and/or guiding
degradation of their mRNA targets (Jones-Rhoades et al., 2006;
Zhang and Wang, 2015; Xie et al., 2015b). In human genome,
over 60% of human protein-coding genes seem to be the
regulatory targets of miRNAs (Friedman et al., 2009; Sunkar
et al., 2012). Based on the model plant Arabidopsis (Arabidopsis
thaliana) gene annotation data, among 27,416 protein-coding
genes are released in TAIR10 (https://www.arabidopsis.org/
index.jsp), 1,359 genes are non-coding RNAs (ncRNAs), and
the number of mature miRNA is 427. In contrast with the
considerable amount of protein-coding mRNAs are regulated
by miRNAs in human, it appears that only about 150 mRNAs
are the target genes in plant through degradome sequencing
and genome analysis (Addo-Quaye et al., 2008; German et al.,
2008; Li et al., 2010; Sunkar et al., 2012). Nonetheless, plenty of
studies show that plant miRNAs appear to prefer targeting
transcription factors, the majority of them exert potent
functions in plant various developmental stages (Sunkar et al.,
2012; Nova-Franco et al., 2015; Zhang, 2015). Thus, alteration
of miRNAs expression level usually results in significant
changes in plant growth and development (Chuck et al., 2009;
Meng et al., 2010; Rubio-Somoza and Weigel, 2011; Kamthan
et al., 2015).

With increasing human population and decreasing fossil
energy, food and energy are currently two growing challenges
faced by human beings. Over the past decades, intensive studies
have advanced our understanding from miRNA biogenesis to
biological functions and regulatory mechanisms. Thus, a
consensus is forming that miRNA may act as an important

target for improving the agronomic characters of food crop,
economic crop, and biofuel plant, to benefit the sustainable
development of human being (Trumbo et al., 2015; Zhang,
2015). Fundamentally speaking, plant organs are developed
from plant pluripotent stem cell. Considering the remarkable
influence on plant stem cell regulation of miRNAs, this review
begin with the relationship between miRNA biogenesis and
development, then we turn to emphasize our current
discoveries of miRNA-mediated plant stem cell regulation and
subsequent plant tissue derive. Meanwhile, we also highlight the
biological roles of miRNAs in crop plants andmiRNA-mediated
molecular network formation.

Impairment of Key miRNA Biogenesis Genes Cause
Pleiotropic Developmental Defects

Mature miRNAs are single-stranded short RNA sequence with
21–24 nucleotides in length that base pair with target mRNAs.
Generally, the miRNA biogenesis involves several
interdependent steps, including primary miRNAs (pri-
miRNAs) transcription, further processing and modification,
RNA induced silencing complex (RISC) loading (Fig. 1).

The transcription of plant pri-miRNAs is similar to protein-
coding genes, the majority of them are transcribed from their
own transcriptional units termed asMIR genes, whose genome
sequences are usually located at intergenic regions of protein-
coding genes and have their own promoter and independent
regulatory pattern (Griffiths-Jones et al., 2008; Chen, 2009;
Nozawa et al., 2012). In addition, genome wide analysis show
that some miRNAs can be produced from intronic or exonic
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regions of protein-coding genes in in rice (Oryza sativa) and
Arabidopsis and share the some cis-regulatory elements with
their protein-coding genes (host genes) (Yang et al., 2012b),
and even certain miRNAs seem to be encoded by transposable
elements (TEs) (Piriyapongsa and Jordan, 2008). In plant, the
DNA-dependent transcriptional activator, RNA polymerase II
(Pol II), is majorly responsible for transcribing thoseMIR genes
to generate large initial transcriptional product referred as
primary miRNAs (pri-miRNAs) (Lee et al., 2004). During this
step, some auxiliary proteins, such as mediator complex,
Negative on TATA less2 (NOT2) protein, elongator complex,
assist Pol II to increase its activation (Kim and Chen, 2011; Kim
et al., 2011;Wang et al., 2013). Prior to further processing, pri-
miRNAs will be capped at their 50 end and polyadenylated at
their 30 end similar as the most other pol II derived
transcriptional event (Chen, 2009). In addition, pri-miRNAs
recently show that contain short ORF (open reading frame)
sequences involved in the synthesis of regulatory peptides,
which can promote the accumulation of their own mature
miRNAs (Lauressergues et al., 2015).

In contrast to protein-coding genes, pri-miRNAs harbor an
imperfect stem-loop structure, which is need for directing

DICER-LIKE1 (DCL1)-mediated cleavage near the base of its
stem to generate a precursor miRNA (pre-miRNA) (Park et al.,
2002; Chen, 2009). And the pre-miRNA stem-loop structure is
further processed by DCL1 into miRNA/miRNA� duplex. For
stabilization, the 30 end of miRNA/miRNA� duplex is
methylated by RNA methyltransferase HUA ENHANCER 1
(HEN1) in the nucleus (Kurihara and Watanabe, 2004). In
Arabidopsis, argonaute protein 1 (AGO1), which possesses
endonuclease activity, is the major effector that is responsible
for recruiting miRNA to form RISCs (Vaucheret et al., 2004;
Baumberger and Baulcombe, 2005; Mallory and Vaucheret,
2006). In this AGO1-centered RISCs, the mature single-
stranded miRNA functioned as guides to target
complementary mRNAs, while the miRNA� (passenger strand)
is often destabilized (Bartel, 2004; Du and Zamore, 2005;
Mallory and Vaucheret, 2006; Rogers and Chen, 2013; Bologna
and Voinnet, 2014).

Intriguingly, intensive studies indicate that plant miRNAs
biogenesis are tightly regulated, otherwise plants would exhibit
multiple developmental defects, such as plant size, flowering
time, and fertility (Fig. 1), suggesting that miRNAs are the
potent regulators in plant development.

Fig. 1. Misregulation of miRNA biogenesis results in pleiotropic developmental defects. A: A diagrammatic representation of miRNA
biogenesis processes. B: Severe developmental impairments result from the mutation of key miRNA biogenesis genes. Negative on TATA
less2 (NOT2), CELL DIVISION CYCLE 5 (CDC5), DICER-LIKE1 (DCL1), DAWDLE (DDL), TOUGH (TGH), HYPONASTIC LEAVES1
(HYL1), SERRATE (SE), HUA ENHANCER 1 (HEN1), HASTY 1 (HST1).
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miRNAs Play Key Role in Plant Morphogenesis

Just like animal, the various differentiated functional organs are
originated from plant stem cells, which are a class of cell
population with multiple differentiation potential based on
their two distinctive properties, the ability to maintain
pluripotent state of themselves and the ability to provide
mature specialized cell types (Weigel and Jurgens, 2002). Plant
stem cells are confined within specialized niches, shoot apical
meristems (SAM), and root apical meristems (RAM),
respectively. In higher plants, the formation of shootmeristems
generally occurs in two situations, first SAM formation occurs
during embryogenesis from the axil of cotyledon(s), and the
second SAM formation occurs during post-embryogenesis
from the axil of leaves (Fig. 2) (Weigel and Jurgens, 2002; Aida
and Tasaka, 2006).

As the critical role of stem cells in plant morphogenesis,
meristems studies are always the hot research area. Recent
advances are refining our understanding of gene regulation and
intercellular signal communication that are represented by
miRNA-mediated meristem development.

miRNA-regulated SAM development

Stem cells in the SAM are the precursors of various aerial
functional cells and their precise spatio-temporal regulation is the
basis of subsequent cell fate determination and organ formation
of higher plant (Singh and Bhalla, 2006; Zhang and Zhang, 2012;
Zhou et al., 2015). SomemiRNAs are proved participate in SAM
development, including directly post-transcriptional regulation
of key SAM-related genes, act asmobile signalmolecules for stem
cell maintenance (Zhang and Zhang, 2012; Baumann, 2013;
Knauer et al., 2013; Zhou et al., 2015).

The SAM is organized into discrete cell layers, outer cell
layer L1 (protoderm), subepidermal layer L2, and inner corpus
layer L3 (organizing center, OC), respectively (Satina et al.,
1940). WUS (WUSCHEL) protein is a homeodomain
transcription factor and its expression inOC cell is essential for
maintaining the undifferentiated state of stem cell (Knauer
et al., 2013). Base on the key role in SAM development, WUS
protein are known to associate with regulation of rice tillers
development (shoot branch of rice), the critical factor for rice
grain yield (Wang et al., 2014; Tanaka et al., 2015). Previous
genetic screen results indicated that AGO10 (also known as
PINHEAD and ZWILLE), one of nine AGO family members in
Arabidopsis (Zhang and Zhang, 2012), is key factor of SAM
maintenance (Moussian et al., 1998; Lynn et al., 1999; Tucker
et al., 2008). Mutation of AGO10 leads to the failure of
embryonic meristem maintenance and exhibit pinhead
phenotype (empty apex) in place of the apex (McConnell and
Barton, 1995; Moussian et al., 1998; Lynn et al., 1999). And
further study demonstrates that AGO10 appear to participate
in the regulation of WUS protein activity and
AGO10-mediated SAM maintenance via a non-cell-
autonomous mechanism (Tucker et al., 2008). However,
AGO10 itself impossible to move between cells and it seems
that some signal molecules might implicate in this process
(Tucker et al., 2008). Subsequent genetic results show that
miR165 and miRNA166, which are very similar and only have
one nucleotide difference in mature miRNA sequence (Zhu
et al., 2011), display abnormally elevated expression in ago10
mutant (Liu et al., 2009b). Furthermore, the abnormal shoot-
apex phenotypes can be partially rescued by reducing miR165/
166 expression in ago10 mutant plant (Liu et al., 2009b). In
addition, miR165/166 are well-characterized that share the
same target genes, class III HOMEODOMAINLEUCINE ZIPPER

Fig. 2. Schematic model of stem cell-derived plant organogenesis and miRNA-mediated regulation. Images reorganized and reprinted from
(Weigel and Jurgens, 2002).
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(HD-ZIP III) family transcription factors, which mainly involved
in SAM-related development, including apical embryo
patterning organ, SAM formation and maintenance, and
polarity of lateral organs (McConnell et al., 2001; Rhoades
et al., 2002; Tang et al., 2003; Prigge et al., 2005; Itoh et al., 2008;
Zhu et al., 2011). Therefore, miR165 and miRNA166 are the
ideal mobile signal molecules to participate in AGO10-mediated
non-cell-autonomous regulation, and molecular analysis show
that AGO10 can specifically interacts with miR165/166 (Zhu
et al., 2011; Zhou et al., 2015). And AGO10 acts just like a
decoy for miR165/166 to prevent their repressive function on
HD-ZIP III genes andmaintain the SAM development (Zhu et al.,
2011; Zhou et al., 2015).

Similar phenotypes are also observed in maize. Rolled leaf1
(Rld1), a semi-dominant maize mutations, is found that can
affect adaxial/abaxial (dorsoventral) polarity of maize leaf
(Nelson et al., 2002). Genetic analysis shows that Rld1 encode a
maize HD-ZIP III family gene (rev1) and share 70% protein
sequence identity with Arabidopsis REV, one of the five
members in Arabidopsis HD-ZIP III family genes (Juarez et al.,
2004; Zhang and Zhang, 2012). Situ hybridization results show
that maize rev1 gene dominantly express at the tip of SAM and
SAM-related regions, which very similar to Arabidopsis HD-ZIP
III family genes (Juarez et al., 2004). In addition, maize rev1 also
contain the conserved miRNA165/166 complementary site
just as it is in Arabidopsis (Juarez et al., 2004), suggesting that
maize and Arabidopsis may share a common regulatory
mechanism.

TRANS-ACTING siRNA (ta-siRNAs) is other kind of
21-nucleotide small RNA with same post-transcriptional
regulatory functions as miRNAs (Mallory and Bouch�e, 2008).
Genetic results show that ta-siRNAs also functioned in crop
plant SAM development, such as maize and rice. For example,
leafbladeless1 (lbl1), a recessive mutant of maize, exhibits leaf
polarity defects resulting from abnormal development of
primordia in meristem (Timmermans et al., 1998). Sequence
analysis showed that LBL1 encodes SUPPRESSOR OF GENE
SILENCING3 (SGS3) functioned in the biogenesis of ta-siRNAs
(Nogueira et al., 2007). Interestingly, the expression of
mir166c, mir166i, and mir166h are activated at the base of the
SAM after knocking out of SGS3 (Nogueira et al., 2007).
Consistent with this result, the maize HD-ZIP III family genes
rolled leaf2 (rld2) in the SAM is dramatically reduced in SGS3
mutant plant (Nogueira et al., 2007). Additionally, the rice Shoot
organization (SHO) gene family and SHOOTLESS (SHL) gene
family are identified as the crucial factor in the initiation and
maintenance of SAM (Satoh et al., 1999; Itoh et al., 2000; Satoh
et al., 2003). Mutation in those gene loci, including SHO1, SHO2,
and SHL2, always causes the complete deletion or impairment
of rice SAM (Liu et al., 2007; Nagasaki et al., 2007). On the
other hand, SHO1 encodes DICER-like 4, SHO2 encodes
ARGONAUTE (AGO) 7, and SHL2 encodes RNA-dependent
RNA polymerase 6 (Liu et al., 2007; Nagasaki et al., 2007). All of
genes are known to be involved in ta-siRNAs biogenesis
pathway (Mallory and Bouch�e, 2008). Thus, ta-siRNAs are
considered that may play important role in SAM formation.
However, the abnormal SAM development in shl mutant is
relate to the rice miR165-HD-ZIP III genes regulatory pathway
(Nagasaki et al., 2007). Furthermore, the expression of rice
HD-ZIP III genes, OSHB1 and OSHB2, is dramatically repressed
in sho1 and sho2 mutant plant, whereas the expression of
miR166 increases in sho mutant (Nagasaki et al., 2007).
Therefore, the synergistic interaction between miRNA and
ta-siRNAsmay exert conserved functions in SAMmaintenance.

In addition to miR165/166-HD-ZIP III genes molecular
pathway, Laux and coworkers employ ethyl methanesulfonate
(EMS) mutants screen system to identify enhancer loci of the
weak ago10-1 stem cell mutant plant and find enh146 mutant
can greatly promote meristem termination in ago10-1

background (Knauer et al., 2013). Molecular results
demonstrate that ENH146 locus encodes miR394 and repress
its expression can impair stem cell maintenance (Knauer et al.,
2013). Moreover, the author further shows that miR394
functioned as a mobile signal providing from outer cell layer L1
(protoderm) to maintain stem cell competence in SAM region
(Baumann, 2013; Knauer et al., 2013).

miRNA-mediated postembryonic shoot meristem
regulation

Embryo-derived shoot meristem (SAM) is mainly responsible
for the establishment of main axis and basic body of higher
plants and only occurs during embryo development (Fig. 2)
(McConnell and Barton, 1998; McSteen and Leyser, 2005;
Hibara et al., 2006). In contrast, postembryonic shoot
meristem (also referred as axillary shoot meristems) can form
in multiple times and is mainly responsible for the initiation of
shoot branching and the establishment of inflorescence
structures, which are the two key component of crop yield
(Komatsu et al., 2003; McSteen and Leyser, 2005; Schmitz and
Theres, 2005; Hibara et al., 2006).

Genetic studies prove that tomato (Solanum lycopersicum)
Lateral suppressor (Ls or Las) gene is the major regulator in
axillary meristem initiation, and its mutant plants exhibit
severely impairment in axillary bud initiation and inflorescence
development (Schumacher et al., 1999). The similar
phenotypes also are observed in rice. Rice MONOCULM 1
(MOC1) is identified from spontaneous mutations and show
several defects in lateral organ development, including
inhibiting the production of shoot branches (tillers), rachis
branches, and spikelets (Li et al., 2003). Moreover,MOC1 share
44% identity to tomato Las gene and they are orthologous
genes (Li et al., 2003; Schmitz and Theres, 2005). Studies on the
Arabidopsis Las mutant indicate that Las possesses conserved
control mechanism in axillary shoot development (Greb et al.,
2003). Genetic analysis shows that Las appears to act
downstream of CUP-SHAPED COTYLEDON genes1 (CUC1) and
(CUC2), two Arabidopsis NAC-domain transcription factors
post-transcriptionally regulated by miR164 (Kasschau et al.,
2003; Laufs et al., 2004; Hibara et al., 2006). Due to the various
developmental defects in cuc1 and cuc2 single or double mutant
plants, CUC1 and CUC2 are suggested to possess several
functions, including embryonic meristem initiation, boundary
size control and cotyledon establishment (Long et al., 1996;
Laufs et al., 2004; Hibara et al., 2006; Raman et al., 2008).
Besides, situ hybridization results indicate that CUC1 and CUC2
mRNA are accumulated in the axils of leaf primordia and exert
crucial role in the establishment of axillary meristems, and
miR164-CUC1/CUC2 regulatory mechanism may implicate in
the LAS-mediated axillary shoot meristems initiation (Hibara
et al., 2006; Raman et al., 2008).

miRNAs and leaf development

Plant leaf is the major organ for photosynthesizing and
thus plays dominant role in plant biomass and crop plant
productivity. The formation of mature leaf involved in
several interdependent developmental processes. Firstly,
establishment of leaf primordia, which is initiated from
undifferentiated cell in SAM peripheral region (Byrne, 2005).
During this establishment, it needs the boundary cells to
separate leaf primordia from SAM and then differentiate along
leaf polarity (Byrne, 2005; Takeda et al., 2011). Thus, the
regulator of organ boundaries CUC1, CUC2, and their
controller miR164 have been demonstrated that implicate in
leaf development (Rubio-Somoza and Weigel, 2011).

As for crop plant, the sharp and size of leaves are related to
the efficiency of photosynthesis and the subsequent yield.
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Through activation-tagging approach, a serrated leaves mutant
termed jaw-Dwas identified in Arabidopsis (Weigel et al., 2000).
Interestingly, the insertion site was characterized in intergenic
region without open reading frame in it, inferring that JAW
locus may encode no-coding RNA, this now well-known
miR319 (Weigel et al., 2000; Palatnik et al., 2003). To date,
several studies suggest that miR319 possesses conserved
regulatory function in leaf development. For example, ectopic
upregulation of miR319 lead to dramatically changes in the size
and shape of tomato leaves (Ori et al., 2007). In addition,
overexpression of rice miR319 displays obvious wider leaf
blade in rice and creeping bentgrass (Agrostis stolonifera) (Yang
et al., 2013a; Zhou et al., 2013b).

miR319 mediates the change of plant leaf shape via targeting
several TCP transcription factors (Palatnik et al., 2003; Efroni
et al., 2008; Schommer et al., 2008). For example, TCP4 has
been identified as the target of miR319 in leaf shape
development through screening EMS mutagenesis that
attenuate the leaf phenotypes of jaw-D plant (Palatnik et al.,
2007). Once the EMS-caused mutations dampen the
complementary binding ofmiR319 to TCP4, the leaf phenotypes
of jaw-D plant would be partially recovered (Palatnik et al.,
2007). In tomato, Lanceolate (La) is a partially dominant mutant
and change the large compound tomato leaves into small simple
ones (Ori et al., 2007). Interestingly, genetic mapping data
demonstrate that La encodes a TCP transcription factor that
contain the complementary sequence for miR319 binding, and
the mutation of La is happen to occur in the binding site of
miR319 and thus interfere the miR319-mediated inhibition
(Ori et al., 2007).

Plant GROWTH-REGULATING FACTORS (GRFs) transcription
factors have been reported to implicate in the regulation of leaf
growth (Kim et al., 2003). Upregulation of AtGRF1 and AtGRF2
give rise to significant enlargement in Arabidopsis leaves and
cotyledons, whereas triple mutants line of AtGRF1–AtGRF3
display smaller leaves and cotyledons (Kim et al., 2003). Similar
phenotypes also are observed in AtGRF5 overexpression lines
and downregulation lines (Horiguchi et al., 2005). However,
miR396 is capable of targeting and post-transcriptional
regulating GRF genes, and this regulatory interaction between
miR396 and GRFs exhibits evolutionary conservation among
different species. For example, overexpression of Arabidopsis
miR396a or miR396b results in narrow-leaf phenotypes
coupled with repression of six GRF targets, which may through
attenuating cell division and proliferation during leaf growth
(Liu et al., 2009a; Rodriguez et al., 2010; Wang et al., 2011a).
Likewise, the narrow-leaf phenotypes also are found in rice
miR396 overexpressing plants (Liu et al., 2014a). In addition to
GRF target genes, miR396 can bind some non-conserved bHLH
transcription factors. bHLH74 has been identified as additional
target of miR396 in regulating Arabidopsis margin and vein
pattern formation (Debernardi et al., 2012). Agreeing with this
result, the legume Medicago truncatula miR396 negatively
regulates the expression of not only six MtGRF genes but also
two bHLH79-like target genes (Bazin et al., 2013).

miRNAs and root system development

As the second party of plant body, plant root system
is pivotal for nutrient and water uptake, plant upright,
hormone, and secondary metabolites production (Meng
et al., 2010). As everyone knows, water and mineral nutrients
are two indispensable factors not only for plants surviving and
development but also for crop plant environment adaptability
and biomass. Thus, the genetic mechanism of plant root
system architecture has been intensive studied over the past
decades.

Just like SAM, plant root system architecture is also mainly
derived from embryonic development and postembryonic

development (Rogers and Benfey, 2015). Embryo-derived root
architecture comprise plant primary root or/and seminal root,
whereas postembryonic development mostly give rise to
lateral, crown, and brace root (Rogers and Benfey, 2015). In
addition, roots are the belowground organs directly interacting
with various environmental factors that can greatly affect the
development of plant root system (Bellini et al., 2014). For
example, plant always optimizes root system architecture to
maximize uptake efficiencies under the condition of drought,
phosphorus (P), and nitrogen (N) deficiency ( Malamy and
Ryan, 2001; Remans et al., 2006; Bayuelo-Jim�enez et al., 2011;
Hu et al., 2011; Chen et al., 2012; Dai et al., 2012; Bellini et al.,
2014Ferdous et al., 2015). Thus, plant root system architecture
is result from the coordination between exogenous
environmental factors and endogenous signal pathways.

Auxin act as development-related phytohormone and has
been proved to be an important modulator of root
development (Gutierrez et al., 2012; Orman-Ligeza et al., 2013;
Bellini et al., 2014). And recent studies also show that some
miRNA play key role in root architecture regulation via post-
transcriptional modification of the key auxin signal pathway
genes (Wang et al., 2005; Jin et al., 2013; Curaba et al., 2014).

Arabidopsis TRANSPORT INHIBITOR RESPONSE PROTEIN 1
(TIR1) is an auxin receptor that directly involves the
degradation of AUXIN/INDOLE ACETIC ACID (Aux/IAA)
transcriptional repressors after perceiving auxin signaling
(Kepinski and Leyser, 2005; Dharmasiri et al., 2005a). TIR1
belongs to a small gene family that include five other members
AUXIN SIGNALING F-BOX (AFB1-5), which show distinct
biochemical activities and biological roles (Dharmasiri et al.,
2005b; Parry et al., 2009). TIR1 and AFB2 functioned in the
seedling root and are post-transcriptionally negatively
regulated by miR393 (Navarro et al., 2006; Parry et al., 2009).
OsmiR393a and OsmiR393b are two miRNAs transcribed
from rice genome, whose rice overexpression lines show
obvious changes in root development involved altered auxin
signaling, including primary root elongation and adventitious
roots number (Bian et al., 2012). In addition, further results
suggest that two rice homologs of Arabidopsis TIR1, OsTIR1 and
OsAFB2, act as the targets of OsmiR393 (Bian et al., 2012; Xia
et al., 2012).

Earlier study has found an IAA/ARF transcriptional
repressors IAA28 involved in Arabidopsis lateral root formation
and its mutant iaa28-1 exhibit severe defect in lateral root
initiation (Rogg et al., 2001). Recent research indicates that
IAA28-regulated lateral root development associates with the
GATA23, a key transcription factor controlling the specification
of lateral root founder cell (De Rybel et al., 2010). In addition,
yeast two-hybrid results indicate that IAA28 protein can
interact with five ARF proteins (ARF5, ARF6, ARF7, ARF8, and
ARF19), which may be essential to auxin-mediated lateral root
formation (De Rybel et al., 2010). However, molecular data
show that IAA28 contains partly complementary sequences
targeted by miR847 for cleaving (Wang and Guo, 2015). This is
further verified by the phenotypical observation that
upregulation of miR847 phenocopy the developmental defect
in iaa28-1 lateral root formation (Wang and Guo, 2015).

Auxin activates its signal transduction and promotes auxin-
mediated development mainly via auxin response factor (ARF)
family genes (Gray et al., 2001; Zhao, 2010). In Arabidopsis, ARF
family has 23 members (Remington et al., 2004; Yang et al.,
2013b). Among them, ARF10, ARF16, and ARF17 can be special
targeted by miR160 (Mallory et al., 2005; Yang et al., 2013b).
Upregulation of miR160c leads to several changes in root
development, such as decrease primary root and increase
lateral root number (Wang et al., 2005). More interestingly, the
root of Pro35S:MIR160c seedings almost lose its gravitropism
and exhibit curly primary root, which are the typical
phenotypes of root cap defects (Wang et al., 2005). Moreover,
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arf10-2 arf16-2 double mutant plants phenocopy Pro35S:
MIR160c plant in agravitropic root growth (Wang et al., 2005).
Thus, miR160 may functioned as a key controller in plant root
cap formation thought cleaving ARF10 and ARF16 transcripts
(Wang et al., 2005). Furthermore, root phenotypic changes
also be observed in Medicago truncatula and rice miR160
overexpression lines (Meng et al., 2010; Bustos-Sanmamed
et al., 2013). However, no obvious differences in root growth
rate and lateral root density are found after upregulating the
expression of soybean (Glycine max) miR160, although miR160
significantly affect the sensitivity to auxin (Turner et al., 2013).

miR167 also be reported to involve in regulating root
development by targeting ARF family genes ARF6 and ARF8
(Gutierrez et al., 2009). In contrast to the negative regulatory
functions of miR160, miR167 exerts positive roles in
adventitious root formation (Gutierrez et al., 2009; Gutierrez
et al., 2012). Thus, miR160, miR167, and their targets ARF17,
ARF6, and ARF8 may form a complicated regulatory loop in
control adventitious root formation (Gutierrez et al., 2009).

Asmentioned above, miRNA sometimes cooperate with the
other small RNAmolecule such as ta-siRNAs to regulate some
biological processes. Another example is that some miRNAs
directly mediate the biogenesis of ta-siRNA, such as miR173
responsible for cleaving the transcripts from TAS1 and TAS2
loci, miR390 for TAS3, and miR828 for TAS4, respectively
(Axtell et al., 2006; Howell et al., 2007; Montgomery et al.,
2008a). Among them, TAS3 ta-siRNA is capable of targeting and
repressing the expression of ARF2, ARF3, and ARF4 in regulation
of developmental timing and leaf development (Adenot et al.,
2006; Fahlgren et al., 2006; Garcia et al., 2006; Hunter et al.,
2006; Montgomery et al., 2008b). Interestingly, overexpression
of TAS3 can significantly promote the elongation of lateral
roots, combiningwith expression analysis data that miR390 and
TAS3 have overlapped expression region controlling the lateral
root initiation, suggesting that miR390-TAS3 pathway
implicated in lateral root growth (Marin et al., 2010).

In addition, miRNAs are also the major modulator in root-
mediated nutrient deficiency and drought responses,which have
been reviewed recently (Ferdous et al., 2015; Paul et al., 2015).
Thus, miRNAs and their targets may evolve a complicated
molecular web to coordinate exogenous environmental clues
and endogenous developmental regulation.

miRNAs and Plant Floral Transition

With the growth and development of leaves and root, the adult
plant organs have been formed and then will undergo the
transition from vegetative to reproductive phase, namely plant
floral transition. The successful floral transition is related not
only to the plant thriving but also to crop plant productivity. Up
to now, there are five flowering time pathways established
through studying the annual model plant Arabidopsis, including
Gibberellic acid (GA) pathway, autonomous pathway, age
pathway, photoperiod, and vernalization pathway (Wang,
2014). These pathways together form an elaborate molecular
network transducing endogenous and environmental flowering
time cues to many floral integrative regulators, such as
SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1),
FLOWERING LOCUS T (FT), LEAFY (LFY), and PETALA1 (AP1)
(Komeda, 2004). miR156 andmiR172 are well-studiedmiRNAs
involved in floral control. As their conserved roles discovered
across monocotyledons and dicotyledons, a common view was
formed that miRNA may act as potent breeding tool in crop
plant genetic improvement.

miR156 and miR172 are two both independent and
interrelated miRNA. In expression patterns and regulatory
functions, miR172 and miR156 always display some degree of
opposite correlation. miR172 expression is hardly detected in
plant juvenile phase and accumulating with the developmental

time. And overexpressing miR172 promote the flowering time
in both monocotyledons and dicotyledons (Zhu and Helliwell,
2010). In contrast, the expression level of miR156 gradually
decreases from seeding stage to adult stage, and upregulation
of miR156 results in delayed floral transition. In their target
genes, the mature 21-nucleotides miR172 binds to the 30 end
near the coding region of AP2 domain transcription factors
(Park et al., 2002; Chen, 2004). AP2 transcription factors family
exists specifically in plant kingdom and several of their
members usually exert repressive roles in flowering time,
including SCHLAFMUTZE (SMZ), SCHNARCHZAPFEN (SNZ),
TARGET OF EAT1 (TOE1), and TOE2 (Aukerman and Sakai,
2003; Schmid et al., 2003). However, miR156 is reported to
specially target SQUAMOSA PROMOTER BINDING LIKEs (SPLs)
family genes, such as SPL3 and SPL9 (Cardon et al., 1999;
Rhoades et al., 2002; Xing et al., 2010). And interestingly, many
miR156 targets, including SPL9, SPL10, seems redundantly
implicated in the transcriptional regulation of miR172 through
binding its promotor region (Wu et al., 2009). Thus, miR156
may act upstream of miR172 and they work together to form a
molecular network to control the developmental processes
(Wu et al., 2009).

Given the time-related expression pattern and critical
regulatory role in plant juvenile-to-adult phase transition,
miR156 and miR172 are considered as two main participator in
plant age-dependent floral pathway (Bergonzi and Albani, 2011;
Wang, 2014). In addition, miR156 and miR172 appear to
mediate the interplays between age pathway and other floral
pathways. Vernalization refers to many winter ecotypes plants
require a certain period of cold treatment to ensure normal
flowering time. However, two Arabidopsis perennial relative
Arabis alpine (A. alpina) and Cardamine flexuosa (C. flexuosa) only
response this induction when it is at least 5 weeks old (Wang
et al., 2011b). It is seem that those perennial plants need some
time to develop adult vegetative organs before transferring to
reproductive phase. Uncovering the regulatory mechanism and
finding that miR156 and miR172 are essential to this kind of
age-dependent vernalization behavior, although their
subsequent molecular regulations have some differences
(Bergonzi et al., 2013; Zhou et al., 2013a). GA is a floral
activator and exerts this role through destabilization of several
GA repressors DELLA proteins in Arabidopsis (Harberd et al.,
2009). Molecular data show that the DELLA protein RGA can
physically bind to SPL9 and attenuate its transcriptional
activities on miR172, SOC1, and FRUITFULL (FUL) (Yu et al.,
2012). In photoperiod pathway, GIGANTEA (GI) is key regulator
that mediates photoperiodic flowering by promoting the
transcription of CONSTANS (CO), the core component that is
responsible for measuring the distinction of day length (Fowler
et al., 1999; Park et al., 1999). However, a report suggests that
GI also employ the other miR172-dependent pathway in
photoperiodic induction, which is independent to CO but
require the functional FT, the target of CO (Jung et al., 2007).
Moreover, many miR156-targeted SPL genes are able to
respond to the photoperiodic changes (Wang, 2014). Thus,
miR156 and miR172 are two important members in plant floral
signal network, combining their conserved molecular role
across monocotyledons and dicotyledons, indicating that those
miRNAs may play a bigger role in improving crop productivity.

miRNAs Regulate Key Agronomic Traits of Crop Plant
miRNA and cotton fiber

Cotton is one of the most important economical crops, which
produce the natural and renewable textile fiber and its
worldwide economic impact is almost US$500 billion annually
(Chen and Guan, 2011; Guan et al., 2014b). G. hirsutum and G.
barbadense are two widely cultivated cotton cultivars which
account for 90% and 5–8% cotton fiber production of the
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world, respectively (Qin and Zhu, 2011). Both of them are
allotetraploids and contain two sets of subgenomes, “A” and
“D,” which diverged approximately 5–10 Myr (million years)
ago (Senchina et al., 2003). A-genome diploids species are
usually capable of producing shorter cotton fiber and have been
used as cultivars in some area, whereas most D-genome
diploids species only produce rudimentary fiber that is no
useful for textile industry. As the result of the hybridization and
polyploidization events occurred in around 1–2 Myr ago
(Paterson et al., 2012), those two subgenomes reunited and
formed the original wild relatives, which then undergo a long
period of domestication and human selection to make sure
they can produce agronomically desirable cotton fiber traits.
Thus, the emergence of modern spinnable fiber is the process
of both natural and human selection.

Through genome sequencing research, many conserved and
newmiRNAs show that express specifically inG. hirsutum fibers
and most of their targets may implicate in cotton fiber
development (Paterson et al., 2012). Furthermore, miRNAs
may form a complicated regulatory network to coordinate
different fiber development stages, including initiation,
elongation, and secondary cell wall biosynthesis (Liu et al.,
2014b; Xie et al., 2015a). Polyploidy is a very common event
during plant genome evolution and always confers significant
influences in plant productivity and quality, such as tetraploid
cottons usually produce better fiber than diploid cottons’ (Jiang
et al., 1998). In addition, genome analysis demonstrates that
cotton A subgenome is considered as the major contributor to
fiber improvement, whereas D subgenome is mainly to stress
tolerance (Zhang et al., 2015). And miRNAs derived from A
subgenome appear to participate in several ovule- and fiber-
related biological processes (Xie and Zhang, 2015).

Cotton fiber is a kind of special single-celled trichomes
initiated from the epidermal layer of cotton ovule and shares
some similar regulatory mechanisms with leaf trichome
development (Wan et al., 2014). The Arabidopsis R2R3 MYB-
domain transcription factor GLABROUS1 (GL1) is key positive
controller of trichome initiation (Larkin et al., 1993), and
overexpression of a cotton GL1-like MYB transcription
factor (referred as GaMYB2) can rescue the trichomeless
phenotype of gl1 mutant (Wang et al., 2004). More
interestingly, knocking-down the expression of cotton
GhMYB25-like gene lead to fiberless phenotype but no effect
on cotton other trichome formation (Walford et al., 2011).
To date, many lines of evidences indicate that MYB family
transcription factors are the critical regulator in cotton fiber
development (Paterson et al., 2012; Li et al., 2014b, 2015).
Among those MYB transcription factors, some of them are
predicted to act as the targets of miRNA, such as miR159,
miR858, and miR828 (Pang et al., 2009; Guan et al., 2014a).
MiR828 and miR858 were recently experimentally proved to
coordinate cotton GhMYB2-medited Arabidopsis trichome
and cotton fiber development (Guan et al., 2014a).

Thus, uncovering the underlying regulatory mechanisms
underlying miRNA-mediated MYB transcription factors is

fundamentally important for understanding cotton fiber
formation and subsequent genetic improvement.

OsmiR397 and rice yield

Through genome-wide identification and screening, OsmiR397
was found to highly abundance in rice seeds (Chen et al., 2011;
Zhang et al., 2013). After overexpressing its two isoforms,
OsmiR397a and OsmiR397b, the author observed that
overexpressing rice plants show strongly nodding panicles
compared with wild type plants (Zhang et al., 2013). Statistical
data demonstrate that overexpression of OsmiR397a and
OsmiR397b lead to 7.4 and 13.4% increase in 1,000-grain
weight, coupling with the promotion in grain size, including
grain length, width, and thickness (Zhang et al., 2013). In
addition, OsmiR397 appears to implicate in the regulation of
several key yield-related factors, such as vascular bundle
formation, panicle branches numbers, effective grains and tiller
numbers, grain hull, and endosperm size, which may contribute
to the grain yield increased by 17.0%/24.9% in miR397a/b
upregulating plants (Zhang et al., 2013). Further molecular and
genetic results suggest that miR397-caused grain yield increase
result from downregulation of its target gene, rice laccase
(LAC), a regulator involved in brassinosteroids signaling (Zhang
et al., 2013). Additionally, the regulatory interaction between
miR397 and LACmRNA has been predicted to be conserved in
many species, including tobacco, Populus trichocarpa, and
Arabidopsis (Jones-Rhoades and Bartel, 2004). Therefore,
miR397 play a greater role in productivity of other crop plants.

Conclusions and Future Prospects

Based on the intensive researches in the past 20 years, rapid
and significant progress has been made in uncovering miRNA
biogenesis, targets prediction, biological functions, and
molecular mechanisms, which greatly advance our
understanding about the elaborate and fancy regulatory
network generated with long-term plant evolution. In addition,
it is a tendency that miRNA can act as a new breeding tool in
plant genetic improvement (Zhang, 2015; Zhang and Wang,
2015). As mentioned above, some miRNAs have been proved
that possess powerful effect on the regulation of major
agronomic characters (Table 1). However, the majority of the
miRNA are not well studied, especially some of low-abundance
miRNAs, which also exert potent role in plant development as
described recently (Wang and Guo, 2015). Additionally,
comparing with multifunctional and dominant roles, miRNAs
still have many mysterious areas need to be further studied.

In regulatory hierarchy, plant miRNAs prefer to target
transcription factors and depend on repressing their
transcription factor targets to further regulate the expression
of functional genes. However, miRNAs always display various
spatio-temporal expression patterns through histochemical
and other expression analysis methods. In addition, many
miRNAs are rapidly response to different environmental clues.

TABLE 1. miRNA and crop plants agronomic traits

miRNA Plant species Functions Reference

miR156 Cotton Fiber elongation (Liu et al., 2014b)
Rice Panicle branches, grain yield (Jiao et al., 2010; Miura et al., 2010)
Maize Leaf initiation, floral architecture, tiller (Chuck et al., 2007a)
Tomato Stem pith, fruit size, shorter plastochron, later flowering (Zhang et al., 2011)

miR172 Rice Developmental stage, floral organs, fertility and seed weight (Zhu et al., 2009)
Maize Sex determination, meristem cell fate (Chuck et al., 2007b)

miR828 and miR858 Cotton Fiber development (Guan et al., 2014a)
mir397 Rice Grain yield, panicle branches (Zhang et al., 2013)
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Thus, how the transcript of specific miRNAs be regulated? In
addition to that, miR172 can be transcriptionally activated by
miR156 target SPL9, its expression level also significantly
altered in miR172 itself target mutant plants and
overexpressing plants. Thus, miRNAs may form a complicated
regulatory loop to tightly control miRNA expression despite it
still unclear.

In terms of molecular size, miRNAs are the ideal signal
molecule for long-distance signaling transduction.
Photosynthetic carbon resource and mineral nutrients, which
are assimilated in shoot and root, respectively, are two
indispensable parts for plant growth and development. In
Pi-deficiency growth condition, plant exhibits many growth
impairment, such as shortened smaller shoot size, primary, and
lateral roots (Devaiah et al., 2007). The communication
between shoot and root is essential not only to the plant Pi
starvation acclimation but also to keep plant development in a
coordinated way (Lin et al., 2008; Liu et al., 2010). Sugars and
miR399 have been characterized as two crucial long-distance
signal molecules for systemic signaling transduction under
Pi-deficient conditions (Liu et al., 2005, 2010; Karthikeyan et al.,
2007; Hammond and White, 2008; Lin et al., 2008; Pant et al.,
2008). Consistent with this, many small interfering RNAs also
usually act as mobile molecules to mediate gene silencing
(Dunoyer et al., 2010), and miR394 has been identified as
mobile signal molecule to maintain stem cell competence in
SAM region (Baumann, 2013; Knauer et al., 2013). In addition,
some evidences show that miR172 seems to be implicated as
long-distance signals to affect potato tuberization (Martin et al.,
2009). Thus, further uncovering the mobile role of miRNAs
may help us better understand the interesting regulatory
network.

As the sessile nature, plants need to suffer different kinds of
biotic and abiotic stresses, such as pathogens infection,
drought, heat, cold, andmineral nutrients starvation. However,
the plants always need to coordinate the balance between plant
development and stresses activation because of the limitation
of resources available (Yang et al., 2012a; Fan et al., 2014;
Li et al., 2014a). Previous researches demonstrate that
transcription factors, depending on the multifunctional
transcriptional reprogramming character, play crucial role in
the trade-off between development and stresses responses
(Pajerowska-Mukhtar et al., 2012; Fan et al., 2014; Li et al.,
2014a). Interestingly, just like some transcription factors, some
miRNAs appear to implicate in multiple regulations of
biological processes, although underlying mechanism still needs
to be illuminated. For example, the main floral regulator
miR156 and its SPL targets are proved to involve in heat stress
memory, salinity, and drought tolerance (Cui et al., 2014; Stief
et al., 2014). In addition, recent study show that miR156-SPL
pathway is able to change the number of lateral root, one of the
key organ governing water and nutrients uptake (Yu et al.,
2015). Hence, whether miRNAs can function as node
molecules, how to converge multiple biological processes for
optimal development and thriving are still mysterious for us.
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