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ABSTRACT 

Motivation: MicroRNAs (miRNAs) play a key role in regulating tu-

mor progression and metastasis. Identifying key miRNAs, defined by 

their functional activities, can provide a deeper understanding of 

biology of miRNAs in cancer. However, miRNA expression level 

can’t accurately reflect miRNA activity.  

Results: We developed a computational approach, ActMiR, for 

identifying active miRNAs and miRNA-mediated regulatory mecha-

nisms. Applying ActMiR to four cancer datasets in The Cancer Ge-

nome Atlas (TCGA), we showed that (1) miRNA activity was tumor 

subtype specific; (2) genes correlated with inferred miRNA activities 

were more likely to enrich for miRNA binding motifs; (3) expression 

levels of these genes and inferred miRNA activities were more likely 

to be negatively correlated. For the four cancer types in TCGA we 

identified 77~229 key miRNAs for each cancer subtype and anno-

tated their biological functions. The miRNA-target pairs, predicted by 

our ActMiR algorithm but not by correlation of miRNA expression 

levels, were experimentally validated. The functional activities of key 

miRNAs were further demonstrated to be associated with clinical 

outcomes for other cancer types using independent datasets. For 

ER
-
/HER2

-
 breast cancers, we identified activities of key miRNAs let-

7d and miR-18a as potential prognostic markers and validated them 

in two independent ER
-
/HER2

-
 breast cancer data sets. Our work 

provides a novel scheme to facilitate our understanding of miRNA. 

In summary, inferred activity of key miRNA provided a functional link 

to its mediated regulatory network, and can be used to robustly pre-

dict patient’s survival. 

Availability: the software is freely available at 

http://research.mssm.edu/integrative-network-biology/Software.html. 

1 INTRODUCTION  

MicroRNAs (miRNAs) have been shown to control cell growth, 

differentiation and apoptosis; consequently, impaired miRNA ex-

pression has been implicated in tumorigenesis (Iorio, et al., 2005; 

Jansson and Lund, 2012). In recent years, miRNA expression sig-

natures have been used to classify cancers and to predict favorable 

prognosis including breast cancers (Calin, et al., 2005; Iorio, et al., 

2005). However, these studies did not provide direct mechanistic 

links between miRNAs and their mRNA targets, therefore, whether 

and how the identified miRNAs play key regulatory roles in post-

transcriptional regulation is not clear.   

  
*To whom correspondence should be addressed.  

A conventional way for identifying key regulatory miRNAs, 

which potentially regulate expression levels of a large number of 

genes, is to explore miRNA-mRNA relationships based on their 

expression levels. By integration of mRNA and miRNA expression 

levels, key cellular pathways related with miRNA signatures are 

shown to associate with cancer progression (Dvinge, et al., 2013). 

However, the association between miRNA and mRNAs does not 

imply that the miRNA causally regulates these genes. It may be 

due to pleiotropic effect of upstream regulators. Furthermore, 

miRNA expression level is not equivalent to its functional activity 

(Mullokandov, et al., 2012). There are proteins or RNAs that can 

mediate the influence of miRNAs on target genes, such as RISC 

complex (Krol, et al., 2010). The relative abundance of miRNAs to 

its target genes determines the functional activity levels of miR-

NAs (Ebert, et al., 2007). Thus, to infer key miRNAs and under-

stand their gene regulatory networks, it is critical to accurately 

quantify the regulatory activity of miRNAs by considering their 

effectiveness on target genes  

By applying systematic computational models integrated with 

prior information on the regulatory sequence of miRNAs, multiple 

miRNA-mediated pathways have been identified. For example, 

key miRNAs are shown to affect genes’ expression levels using an 

integrative model (Setty, et al., 2012). Different approaches for 

identifying key miRNAs have been proposed such as testing miR-

NAs binding sites enrichment among sets of co-expressed genes 

(Gennarino, et al., 2012). Some studies infer the miRNA activity 

using mRNA expression data of genes enriched for miRNA target 

sites (Arora and Simpson, 2008; Madden, et al., 2010) or average 

difference in expression levels of miRNA targets versus non-

targets (Cheng, et al., 2009). However, these methods do not ex-

plicitly consider the role of miRNAs as a post-transcriptional 

regulator. The amount of expression level variation attributed to 

miRNA regulation corresponds to the changes from the total tran-

scribed mRNA level (or baseline mRNA expression level). The 

model to consider pre-processed mRNA level is essential to accu-

rately infer miRNA activities.  

Here we present a novel computational method ActMiR for ex-

plicitly inferring the activity of miRNAs based on the changes in 

the expression levels of target genes due to post-transcriptional 

regulation. The inferred miRNA activity is further used to identify 

key miRNAs that regulate expression levels of a large number of 

genes and may drive tumor progression. Key miRNAs identified 

from its inferred activity can be used as biomarkers for predicting 
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prognosis or as therapeutic targets for cancer treatment. Our Act-

MiR method for inferring miRNA activity is based on two assump-

tions about miRNA function: (i) the baseline expression levels of 

target genes (when a miRNA has no impact) is approximated by 

their levels in samples with low expression level of the correspond-

ing miRNA (as sufficient miRNA concentration is essential for its 

function); (ii) the suppression of target genes by a miRNA depends 

on the expression levels of the mRNAs (Doench and Sharp, 2004).   

We applied ActMiR to four cancer types in The Cancer Genome 

Atlas (TCGA). ActMiR identified 77~229 key miRNAs that play a 

key role in transcriptional regulations for each cancer subtype. We 

demonstrated that our inferred miRNA activity could be further 

used for identifying functional target genes and as prognostic bi-

omarkers. Notably, we identified let-7d and let-7g as key tumor 

suppressors in ER-/HER2- breast cancers, targeting on the expres-

sion level of collagen and extracellular matrix genes. The predicted 

putative causal relationships between let-7d and let-7g and target 

genes based on the inferred activity were experimentally validated. 

Additionally, the predicted activities of let-7d and let-7g were as-

sociated with survival. We further demonstrated in two independ-

ent cohorts that predicted activities of two key miRNAs (i.e. let-7d 

and miR-18a) in ER-/HER2- breast cancers were consistently asso-

ciated with survival, while none of expression levels of these key 

miRNAs was significantly associated with survival. The phenome-

non that only miRNA activity predicted by our ActMiR method 

was robustly associated with patient survival was observed in mul-

tiple cancer types. Taken together, our proposed ActMiR method 

does not only identify key miRNAs, but also provides direct mech-

anism links between miRNAs and their functional mRNA targets 

which in turn act together to affect clinical phenotypes. 

2 METHODS 

2.1 The Cancer Genome Atlas (TCGA) data 

To identify key miRNAs that regulate a large subset of transcriptome and 

in turn affect tumor progression, we integrated mRNA expression data with 

miRNA expression data for four cancer types in TCGA: Breast invasive 

carcinoma (BRCA), Colon adenocarcinoma (COAD), Glioblastoma 

(GBM), and Ovarian serous cystadenocarcinoma (OV). We selected these 

four cancer types because there were publically available independent 

cohort data sets consisting of both mRNA and miRNA expression profiles 

as validation sets. We further considered subtypes of each cancer that was 

previously classified by gene expression levels or clinical features (Bren-

nan, et al., 2013; Cancer Genome Atlas, 2012; Verhaak, et al., 2010). For 

GBM and COAD, we classified tumor samples based on gene expression 

levels. For BRCA, the samples were classified into ER+ and ER-/HER2- 

subtypes based on its clinical features (Supplementary Table 1). See 

details in the Supplementary Methods section. 

2.2 ActMiR for inferring activity of miRNAs from 

expression levels of miRNA and its target genes 

We developed ActMiR, a method for inferring miRNA activity based on 

expression levels of miRNAs and their predicted target genes. Figure 1 

presents an overview of ActMiR for inferring miRNA activity. Three piec-

es of information were used: (i) miRNA expression levels of samples; (ii) 

mRNA expression levels of samples; (iii) the predicted target lists of each 

miRNA. For the predicted target list of miRNAs, we used a collection of 

predicted target genes for 1537 unique mature miRNAs from TargetScan 

(www.targetscan.org) that considers all conserved miRNA binding sites 

inherited from 23-way alignments of UTR sequences (Grimson, et al., 

2007). We filtered out miRNAs whose number of target genes is smaller 

than 10. We further focused on miRNAs whose predicted target genes’ 

expression levels and their own expression levels were available.  

The ActMiR method consists of three steps. First, for each miRNA, we 
estimated the “baseline” expression levels of miRNA’s target genes at the 

state where the miRNA had no impact. As sufficient miRNA concentration 

is essential for its functional activity, we defined baseline expression level 

of the target gene t of miRNA ϕ  as 
, ,

( | e( ) 0)b

t t
y E y
ϕ ϕ

ϕ= →  , which is the 

average expression level of the samples with low miRNA expression level 

(Figure 1A) (see Supplementary Methods for estimating the baseline ex-
pression level). Next, we defined the “degradation” levels as the difference 

between the observed expression levels of targeted genes for each sample, 

which is affected by the miRNA, and the baseline expression level, which 

is unaffected by the miRNA. For each sample s , degradation levels 
, ,

d

t s
y
ϕ

 

of predicted target t of miRNAs φ is determined as follows: 

y
ϕ ,t ,s

d
= y

ϕ ,t

b
− y

t ,s
, where y

t ,s
is the observed expression level of the pre-

dicted target. The expression degradation level allows us to measure how 

much expression level change of the target gene is potentially affected by 

each miRNA. Finally, based on the assumption that the impact of a miRNA 
on its target genes depends on its expression level (Doench and Sharp, 

2004), we used a linear model representing the relationship between the 

degradation levels and baseline expression levels of target genes for each 

sample, 
, , , , ,

d b

t T s s t T s
Y Y
ϕ ϕ ϕ

α
∈ ∈

=  in which the coefficient 
,sϕα

 represents the 

activity of miRNA ϕ  in sample s , where T is the collective set of all 

targets of miRNA ϕ  
(Figure 1B). Not all predicted target genes with seed 

sequences are functionally regulated by miRNAs (Wu et al. 2015). To take 

account for the probability of a predicted target gene being a functional 

target, we used an iteratively reweighted least squares (IRLS) regression 

method to estimate , assuming that the higher anti-correlation between 

miRNA activity and a gene’s expression level across samples indicates the 
higher possibility of being a functional target (shown in Supplementary 

Figure S1 and Supplementary Methods).   

2.3 Identifying key miRNAs and their functional tar-

get genes 

 

A key miRNA was defined as the miRNAs whose activity is significantly 

associated with a large number of mRNAs’ expression levels. To deter-

mine key miRNAs, we first computed associations between miRNA activi-

ty and mRNAs’ expression levels using the Pearson correlation. The signif-

icance of associations between activity of miRNA and mRNA’s expression 

level was assessed by permutation tests (see Supplementary Methods for 

details). Secondly, we counted the number of genes whose expression 

levels were significantly correlated with each miRNA activity. We deter-

mined the threshold of number of genes correlated to each miRNA that was 

significantly larger than numbers from the permuted data sets.  
For each key miRNA, we examined the functional target genes, whose 

expression levels were correlated with miRNA activity, among predicted 

target genes of the miRNA based on TargetScan (Grimson, et al., 2007). 

We further annotated function of key miRNAs by comparing their direct 
target genes with 1320 canonical pathways from BioCarta, KEGG and 

Reactome (Subramanian, et al., 2005), identified biological pathways over-

represented in the functional target gene set of each miRNA using the 
Fisher’s exact test. The FDR was computed based on the 50 randomized 

data sets, as the ratio of the average number of pathways with a p-value 

below threshold across permuted data sets, and the number of pathway with 
p-value below threshold. 

,sϕα
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Figure 1. The overview of our ActMiR procedure. (A) The miRNA and 

mRNA expression matrix are used to infer the regulatory activity of miR-
NA for each sample and for each miRNA. For each miRNA, we estimated 

the baseline expression levels of target genes from their expression levels 

within samples with the lowest miRNA expression level.  For each sample, 
the degradation levels of target genes were computed as the difference 

between expression levels in the sample and baseline expression levels.  

(B) For each sample independently, genome-wide linear regression of 
baseline expression levels on degradation levels was performed. The coef-

ficient from this linear fitting, estimated using an IRLS regression (shown 

in Supplementary Figure S1), represents miRNA activity. 

2.4 Validating functional target genes of key miRNAs.  

HCC1187 cells (obtained from ATCC) were cultured in RPMI1640 media 

supplemented with 10% fetal bovine serum and penicillin/streptomycin. 

Forward transfection of mirVana inhibitors against miR-18a-5p, let-7d-5p, 

or let-7g-5p was performed. After 72h incubation, total RNA was extract-

ed. For cDNA synthesis reaction, 1 µg of the total RNA was used with 

TaqMan Reverse Transcription Reagents. Quantitative PCR (qPCR) was 

performed by using Power SYBR Green Master Mix. Details were shown 

in Supplementary Materials and Supplementary Table S2. 

2.5 Identifying prognostic key miRNAs based on their 

activities 

To further explore functional relevance of key miRNAs, we identified 

prognostic key miRNAs. We tested whether there was association between 

overall survival time and miRNA activities for each cancer type in TCGA 

using a univariate Cox regression model. Additionally, survival prognosis 

by individual miRNAs was tested using a multivariate Cox proportional 

hazard model including covariates such as age at diagnosis, lymph-node 

status, tumor grade if available. To determine the statistical significance, 

we randomly permutated the activity for each miRNA for 1000 times, then 

used the resulting empirical null distribution to compute a FDR.  For com-

parison, we applied the same procedure based on the expression of miRNA 

instead of the activity of miRNA.  

2.6 Validating prognostic key miRNAs in independent 

data sets  

We further validated our predicted prognostic key miRNAs in five inde-

pendent data sets consisting of both miRNA and mRNA expression pro-

files, including two data sets for BRCA and one for each remaining cancer 

type. All independent data sets we used were summarized in Supplemen-

tary Table S3. For GBM and COAD, we clustered samples based on gene 

expression levels, and for BRCA, we used clinical information to classify 

samples (Details are shown in Supplementary Methods). For each data set, 

we inferred miRNA activity from miRNAs and mRNAs expression levels 

using the procedure described above, and then tested association between 

the inferred activity of each key miRNA and overall survival to identify 

prognostic key miRNAs. For Buffa et al.’s breast cancer data set (Buffa, et 

al., 2011), because the overall survival is not available, we used distant 

relapse free survival time instead.  

3 RESULTS 

3.1 miRNA-mRNA correlations were cancer subtype 

specific.   

Due to its molecular and therapeutic heterogeneity, each cancer 

type is generally categorized into subtypes according to gene ex-

pression patterns or clinical features (Cancer Genome Atlas, 2012; 

Cancer Genome Atlas, 2012; Gruvberger, et al., 2001; Verhaak, et 

al., 2010), and each subtype is of significantly distinct molecular 

portrait, response to therapies, and survival rate (Cancer Genome 

Atlas, 2012; Verhaak, et al., 2010). The miRNA-mRNA correla-

tion structure for each cancer subtype was different (Supplemen-

tary Figures S2A, S3A, and S4A).  In particular, strong miRNA-

mRNA associations based on all samples might be due to miRNA 

and mRNA expression level differences among cancer subtypes 

instead of true association between miRNA and mRNA (Supple-

mentary Figures S2B, S3B, and S4B). Additionally, subtype-

specific miRNA-mRNA relationships (see purple in Supplemen-

tary Figures S2A, S3A, and S4A) might be missed when consid-

ering all samples as a whole. These results suggested that miRNA 

regulatory mechanisms were subtype specific and each subtype 

should be studied individually, consistent with recent reports that 

transcriptional regulations of target genes by miRNAs were cancer 

subtype specifics (Farazi, et al., 2014; Pecot, et al., 2013; Song, et 

al., 2013). 

Therefore, for GBM and COAD, we classified tumor samples 

based on previous classification (Brennan, et al., 2013; Cancer 

Genome Atlas, 2012; Verhaak, et al., 2010) (Supplementary Ta-

ble 1). For BRCA, expression levels of many miRNAs (i.e. 211 

out of 682 miRNAs tested) were strongly associated with ER status 

(Supplementary Figure S2C). Among ER- tumors, 21 samples 

were HER2+, which was another important clinical feature to de-

termine effective therapies. Expression levels of 18 miRNA were 

strongly associated with HER2 status (Supplementary Figure 

S2D). Therefore, we classified samples into ER+ and ER-/HER2- 

subtypes. We focused on each subtype in all further analyses. All 

subtypes used were listed in Supplementary Table 1. 

3.2 Expression level of miRNAs was not sufficient for 

identifying causal relationship with target genes   
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We first evaluated relationships between miRNA and mRNAs 

expression levels in individual cancer subtypes using Pearson cor-

relations. For the most subtypes of cancers, the distributions of 

interconnectivity between miRNA and mRNA followed a scale-

free distribution (Supplementary Figure S5), which is the com-

mon property of biological networks (Chen, et al., 2008). This 

observation suggested that there were a small number of miRNAs 

associating with a large number of genes’ expression levels, denot-

ed as hub miRNAs. Hub miRNAs were not equivalent to key miR-

NA regulators, which likely functionally regulated a large number 

of mRNAs (Supplementary Figure S6A). Indeed, predicted 

miRNA binding motifs, based on TargetScan (Grimson, et al., 

2007) were not enriched among these correlated genes for most 

cancer subtypes (x-axis in Figure 2A and Supplementary Figure 

S7A, S8A and S9A). Furthermore, for OV and BRCA, the mRNA-

miRNA correlations were dominated by positive associations (x-

axis in Figure 2B and Supplementary Figure S9B), indicating 

that the correlation between expression levels of miRNAs and 

mRNAs was likely due to pleiotropic effect of upstream regulators. 

Together, our results suggest that the expression level of miRNAs 

was not sufficient to identify functional relationships between 

miRNA and mRNA nor key miRNAs for cancers. This motivates 

us to infer “functional” activity of a miRNA by integrative analysis 

of expression levels of miRNA and its target genes.   

 

Figure 2. (A) The enrichment of miRNA binding motifs. The x-axis 

represents –log10 (p-values of the Fisher’s exact test) for enrichment of 
miRNA binding motifs among genes whose expression levels were corre-

lated with each miRNA expression levels. The y-axis represents the corre-

sponding –log10 (p-values) based on correlations with miRNA activities. 
The color strength indicates the total number of genes whose expression 

levels are correlated with each miRNA activity levels. (B) The percentage 

of positive miRNA-mRNA correlations. The percentage of positively 
correlated mRNAs for each miRNA based on miRNA expression levels (x-

axis) and that based on miRNA activities (y-axis) were shown. Each dot in 

the plots represents one miRNA. 

3.3 Inferred miRNA activities were subtype specific 

As the accessibility of essential miRNA machinery or relative 

abundance of miRNA targets might affect the activity of miRNA 

(Krol, et al., 2010), the inferred miRNA activities did not always 

correlate with miRNA expression levels (Supplementary Figure 

S10).  In general, the correlation between activity and expression 

level of miRNA was positive corresponding to its role in target 

degradation, therefore, the distribution of their correlation coeffi-

cients was positively skewed (Supplementary Figure S10). It is 

worth to note that inferred miRNA activities were not sensitive to 

platforms used for profiling miRNA expression (Supplementary 

Figure S11). For the TCGA data sets, there were more miRNAs 

with high correlation between its activity and expression value for 

BRCA and OV. There were also subtype-common and subtype-

specific miRNAs. For example, miR-18a was one of miRNAs, 

whose activity was the most significantly correlated with its ex-

pression levels in both BRCA subtypes (r= 0.62 and 0.54 for ER-

/HER2- and ER+, respectively), whereas,  the correlation between 

miR-200b expression and its activity was significant only for ER-

/HER2- samples (r= 0.42) but not for ER+ samples (r= -0.004) 

To distinguish potential causal relationships from associations 

between miRNA activities and their correlated mRNAs (Supple-

mentary Figure S6), we investigated the enrichment of predicted 

target genes among genes associated with each miRNA activity. 

We showed that genes whose expression levels correlated with 

miRNA activities were more significantly enriched for miRNA 

target genes predicted based on TargetScan (Grimson, et al., 2007) 

than genes correlated with miRNA expression levels (y-axis in 

Figure 2A and Supplementary Figures S7A, S8A and S9A). 

Furthermore, for OV and BRCA, the dominance of positive corre-

lations between mRNA and miRNA was not detected when miR-

NA activities instead of miRNA expression levels were used (y-

axis in Figure 2B and Supplementary Figure S9B). For example, 

the distributions of the percentage of positive associations based on 

miRNA activity and miRNA expression were significantly differ-

ent for both ER-/HER2- (the Wilcoxon rank sum test p-value < 10-

15) and ER+ subtypes (p-value < 10-15). This observation suggested 

that the activity of a miRNA implies its potential of functional 

regulation on target mRNAs, and the activity of miRNA could be 

used to infer key miRNAs, which are defined as miRNAs that 

might causally regulate a large number of mRNAs.  

3.4 Identifying key miRNAs leads to novel insights 

into breast cancer biology  

We defined key miRNAs as the miRNAs whose activities associ-

ated with expression levels of a number of genes larger than ex-

pected by chance.  For the BRCA data set, 85 and 96 key miRNAs 

were identified for ER-/HER2- and ER+ subtypes, respectively 

(Supplementary Tables S4 and S5 for ER+ and ER-/HER2- sub-

types, respectively). Among them, 44% and 39% of key miRNAs 

for ER-/HER2- and ER+, respectively, were common. Key miRNAs 

included well-known miRNAs whose causal roles in breast cancers 

have been previously studied, such as miR-203, miR-495 and miR-

125b as ER+ specific key miRNAs  (Zhang, et al., 2011; Hwang-

Verslues, et al., 2011; Scott, et al., 2007), miR-9, let-7d, let-7g, 

miR-200b, and miR-200a as ER-/HER2- specific ones (Zhou, et al., 

2012; Yu, et al., 2007; Gregory, et al., 2008) and miR-27a, miR-

17, and miR-20a, miR-141, miR-106b, miR-301a, miR-339-5p, 
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miR-429, miR-200c, miR-222 as common key miRNAs (Mertens-

Talcott, et al., 2007; Hossain, et al., 2006; Yu, et al. 2008; Smith, 

et al., 2012; Shi, et al., 2011; Wu, et al., 2010; Zhao, et al., 2008).  

To understand function of key miRNAs, we compared the func-

tional target genes of each key miRNA with 1320 canonical path-

ways from BioCarta, KEGG and Reactome (Subramanian, et al., 

2005), identified biological pathways significantly enriched in 

functional target gene set of each miRNA at FDR < 1% corre-

sponding to the Fisher’s exact test p-value <1x10-4 (Supplemen-

tary Figures S12-15). For the ER-/HER2- BRCA, we found total 

23 biological pathways that were significantly enriched in target 

sets of at least one of 85 key miRNAs and the 11 key miRNAs 

with at least one enriched pathway were clustered into two groups 

according to their inferred function (Figure 3). The first cluster 

contained five miRNAs (miR-20a, miR-17, miR-93, miR-106a, 

and miR-106b), which were strongly associated with cell cycle 

related pathways (Figure 3), consistent with previous findings that 

miR-17 and miR-20a were regulators of cell cycle transition in 

breast cancer and cancer cell proliferation (Yu, et al., 2008). The 

functional targets of these miRNAs included known cell cycle 

regulators such as E2F3 and CDC25A. The second cluster con-

tained two miRNAs (let-7g and let-7d) that were enriched for sev-

eral pathways, such as the ECM receptor interaction, and the colla-

gen formation (Figure 3). The functional target genes within these 

pathways include twelve collagen genes and ten molecules associ-

ated with extracellular matrix receptor (e.g. THBS1, THBS2, FN1, 

ITGA11, and ITGB5) (Supplementary Figure S16). The activities 

of these miRNAs were significantly anti-correlated with expres-

sion levels of their target genes, representing degradation of tran-

scripts of these genes by miRNAs. A recent study showed that high 

levels of collagen in breasts were associated with breast cancer 

metastasis (Zhang, et al., 2013), which is common in triple nega-

tive breast cancers. In particular, let-7g was shown to promote 

breast cancer invasion and metastasis (Qian, et al., 2011). These 

together suggested the importance of these two key miRNAs (let-

7d and let-7g) in ER-/HER2- breast cancers metastasis.  

For ER+ BRCA, 27 pathways were significantly enriched (FDR 

<0.01) in target gene sets of at least one key miRNA (Supplemen-

tary Figure S12A). Among the 27 pathways, 6 pathways includ-

ing cell cycle pathway were significantly enriched for both ER-

/HER2- and ER+. In particular, the genes involved in the cell cycle 

pathway were regulated by four key miRNAs (miR-106a, miR-93, 

miR-17, and miR-20a), consistent in ER-/HER2- subtype.  

3.5 Functional activities of key miRNAs were associ-

ated with survival rate 

To further explore functional relevance of key miRNAs, we tested 

whether there was association between overall survival and the 

activities of each miRNA based on TCGA data. We identified 3 

and 30 significant prognostic key miRNAs at 5% FDR (p-value 

<1.2x10-2) for ER+ and ER-/HER2- subtype of BRCA, respectively 

(Table 1). It is worth to note that miRNA activities were more 

significantly associated with clinical outcome than their corre-

sponding expression levels for most key miRNAs (Figure 5A).   

There were only 3 prognostic key miRNAs for ER+ breast can-

cer. One reason for lack of prognostic key miRNAs might be that 

downstream genes modulated by miRNAs were highly overlapped 

(Supplementary Figure S17A), suggesting that regulatory net-

works of ER+ breast cancer were regulated together by many key 

miRNAs. Therefore, perturbing individual miRNAs was unlikely 

to have a significant impact on regulatory networks of ER+ breast 

cancer, resulting in less prognostic power of individual miRNA.  

In contrast, we identified 30 prognostic key miRNAs for ER-

/HER2- breast cancer, whereas only 11 non-key miRNAs were 

significantly associated with clinical outcomes (p-value<1.2 x 10-2) 

(Figure 5A and Supplementary Table S6). The activities of well-

known miRNAs whose causal roles in breast cancers have been 

studies, including miR-200c, miR-200b (Gregory, et al., 2008) and 

miR-106b, miR-17, miR-20a (Hossain, et al., 2006; Smith, et al., 

2012; Yu, et al., 2008), were associated with clinical outcomes.   

We found the prognostic miRNAs with particular interests. First, 

the functional target genes of three prognostic miRNAs including 

miR-106b, miR-17, miR-20a were highly enriched for mitotic cell 

cycle (Figure 3). Secondly, let-7d and let-7g were detected as a 

regulator of metastasis (Figure 3) as well as the prognostic miR-

NAs. Tumors with over-active let-7d and let-7g were associated 

with better overall survival rate in ER-/HER2- breast cancers (p-

value<0.001) (Supplementary Figure S18BC). These observa-

tions were consistent with the previous study showing association 

of let-7g depletion with poor prognosis and its effect on tumor 

metastasis (Qian, et al., 2011). Furthermore, miR-18a was the key 

miRNA of prognostic power in ER-/HER2- breast cancer, corre-

sponding to its role in induction of malignancy (Mouw, et al., 

2014).  Even though the activity and the expression level of has-

miR-18a were significantly correlated (r=0.62) in ER-/HER2- 

breast cancer, its activity was significantly associated with survival 

(p-value<0.003) while its expression level was not (Figure 5A). 

This suggests the activity of miRNA instead of expression level of 

miRNA was functionally significant in breast cancer prognosis. 

 

Figure 3. Functional annotation of key miRNAs' functional targets.  

Heatmap of pathway enrichment of functional target genes of each key 

miRNA for ER-/HER2- group of BRCA. The displayed pathways were 

significantly enriched for target genes of at least one key miRNA. 

h
s
a
−

m
iR

−
3

6
1
−

3
p

h
s
a

−
m

iR
−

9
8

h
s
a

−
m

iR
−

3
2

h
s
a

−
m

iR
−

3
6
0

7
−

5
p

h
s
a

−
le

t−
7

g

h
s
a

−
le

t−
7

d

h
s
a

−
m

iR
−

1
0

6
a

h
s
a

−
m

iR
−

1
0

6
b

h
s
a

−
m

iR
−

9
3

h
s
a
−

m
iR

−
2

0
a

h
s
a

−
m

iR
−

1
7

PID_RETINOIC_ACID_PATHWAY
BIOCARTA_PML_PATHWAY

SA_FAS_SIGNALING
BIOCARTA_KERATINOCYTE_PATHWAY
KEGG_ECM_RECEPTOR_INTERACTION

PID_INTEGRIN1_PATHWAY
PID_AVB3_INTEGRIN_PATHWAY

KEGG_FOCAL_ADHESION
REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION
REACTOME_NCAM1_INTERACTIONS

REACTOME_COLLAGEN_FORMATION
PID_SYNDECAN_1_PATHWAY
PID_E2F_PATHWAY

BIOCARTA_CELLCYCLE_PATHWAY
BIOCARTA_G1_PATHWAY

REACTOME_E2F_MEDIATED_REGULATION_OF_DNA_REPLICATION
KEGG_CHRONIC_MYELOID_LEUKEMIA
KEGG_BLADDER_CANCER

REACTOME_CDC6_ASSOCIATION_WITH_THE_ORC_ORIGIN_COMPLEX
REACTOME_CELL_CYCLE_MITOTIC
KEGG_CELL_CYCLE

REACTOME_G1_PHASE
REACTOME_MITOTIC_G1_G1_S_PHASES

0 2 4 6

-log10(p-value)

 at T
echnical U

niversity M
unich on Septem

ber 18, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


6 

 

Figure 4. Experimental validation for functional target genes of key 

miRNAs. (A) Fold increase of each miRNA’s predicted target genes using 
the control and siRNA treatment of each miRNA were shown. (B) The 

Pearson correlation between target genes of each miRNAs and miRNA 

expression (blue) or miRNA activity (red). The miRNA activities of let-7d 
and let-7g significantly correlated with the expression levels of FZD4 and 

HIC1, whereas the expression of let-7d and let-7g did not. Knocking down 

the expression levels of let-7d and let-7g in a triple negative breast cancer 
cell line HCC1187 led to up-regulation of FZD4 and HIC1. Similarly, up-

regulation of ESR1 and ZBTB4 by knocking down miR-18a suggested 

ESR1 and ZBTB4 were functional target genes of miR-18a. 

3.6 Experimental validation of key miRNA-target pairs in 

vitro   

Inference of miRNA activity using our ActMiR method relies on 

expression level changes of miRNA target genes. To validate po-

tential causal relationships between prognostic miRNAs and their 

target genes, which affect biological processes related to patient 

survivals, we perturbed prognostic miRNAs let-7g, let-7d and 

miR-18a in a triple negative breast cancer cell line and measured 

responses of their target genes.  For each miRNA, we measured 

expression changes of two functional targets among its target 

genes, whose expression levels were most correlated with miRNA 

activity in the TCGA data set.  Comparison of qPCR results of the 

control and siRNA of each miRNA confirmed that each miRNA 

regulated the expression of its predicted target genes (Figure 4A). 

As expected, HIC1 and FZD4 mRNA expression increased in anti-

miRNA treatment. It is worth to note that HIC1 and FZD4 were 

predicted as functional targets of let-7d and let-7g only based on 

miRNAs’ activities but not based on miRNAs’ expression levels 

(Figure 4B), further validating the importance of the miRNA ac-

tivity. 

3.7 Validating prognostic value of key miRNAs in 

independent cohorts 

To validate prognostic potential of key miRNAs’ activities, we 

collected 2 independent breast cancer cohorts (Buffa, et al., 2011; 

Dvinge, et al., 2013) with miRNA and gene expression profiles 

(Supplementary Table S3).  For each ER-/HER2- subtype of vali-

dation dataset, we performed the same procedure and identified 53 

Figure 5. Activities of key miRNAs identified in TCGA data sets are of robust prognostic value in independents cohort data sets for ER-/HER2- 

breast cancer. (A) Survival prognosis by miRNA activity (y-axis) and expression level (x-axis), using a likelihood ratio test was shown. Analysis based on 

ER-/HER2- subtype of BRCA of TCGA samples. The red dot represented key miRNAs. (B) Survival prognosis by miRNA expression based on two inde-

pendents cohort data sets (y-axis), Buffa et al. data set (Buffa, et al., 2011) and Dvinge et al. data set (Dvinge, et al., 2013), were compared to the results 
based on TCGA data (x-axis). (C) Survival prognosis by miRNA activity based on two independents cohort data sets (y-axis), Buffa et al. data set (Buffa, 

et al., 2011) and Dvinge et al. data set (Dvinge, et al., 2013), were compared to the results based on TCGA data (x-axis). 
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and 36 key miRNAs for Buffa et al. and Dvinge et al. dataset, 

respectively. Encouragingly, these key miRNAs significantly over-

lapped with the ones derived from the TCGA BRCA data set (p-

value < 2x10-5, and 0.01 for Buffa et al. and Dvinge et al. dataset, 

respectively). For the ER-/HER2- breast cancer in Buffa et al. da-

taset, the activities of let-7d, miR-18a, hsa-miR-130b, and miR-

224 were associated with metastatic outcomes (p<10-2) (Figure 

5C). Two of them (let-7d and miR-18a) were prognostic key miR-

NAs in TCGA samples (Figure 5C and Table 1). Based on 

Dvinge et al. data set, the activity of miR-18a was consistently 

associated with survival of patients with the most advanced tumors 

(Stage III) (Figure 5C).  It is worth to note that the expression of 

let-7d, miR-18a were not associated with overall survival in any 

data sets (Figure 5B and Supplementary Figure S18AB). Fur-

thermore, the functional target genes of let-7d and let-7g from 

TCGA dataset significantly overlapped with the sets from  the 

validation datasets ( for let-7d, p-values  <2x10-22, and <1x10-27, 

and for let-7g, p-values  <1x10-36, and <1x10-60 for Buffa et al. and 

Dvinge et al. dataset, respectively). The target genes of miR-18a 

based on were TCGA and Buffa et al. samples also significantly 

overlapped (p-value<1x10-27). Together, our results suggest the 

miRNA activity can robustly predict patient survival in independ-

ent validation sets while miRNA expression levels can’t. 

Table 1.  Summary of the key miRNAs for each cancer subtype. 

Type Subtypes  Key1  Prognosis2 Robust prognostic keys3 

BRCA ER+ 96 3 miR-500a 

ER-/HER2- 85 30 let-7d, miR-18a 

COA

D 

Invasive 141 3 - 

CIN 175 0 - 

MSI/CIMP 229 32 miR-301b, miR-519a, miR-548b-5p 

GBM Classical 184 0 - 

Mesenchymal 77 0 - 

Neural 159 0 - 

Proneural 102 4 miR-29a 

OV  180 16 miR-519d, miR-520d*, miR-9 
1 Number of key miRNAs;2 Number of prognostic key miRNAs; 3 Robust prognostic 

key miRNAs that are significant in both TCGA and the independent cohort data set. 

 
Figure 6. Activities of key miRNAs identified in TCGA data sets are of 

robust prognostic value in independents cohort data sets for OV. (A) 
Survival prognosis by miRNA activity based on the independents cohort 

data set (y-axis), Bentink et al. ovarian cancer data set (Bentink, et al., 

2012), were compared to the results from TCGA data (x-axis). (B) Kaplan-
Meier survival curve based on the activity of miR-9 based on Bentink et al. 

data set (Bentink, et al., 2012). The blue and red curve represents under and 

over active group, respectively 

3.8 Identifying key miRNAs in other types of cancers 

To ask whether our approach can be applied to cancer bioloy in 

general, we applied our ActMiR approach above to the GBM, 

COAD, and OV data sets and identified 77~229 key miRNAs for 

each caner subtype (Table 1). For GBM, about 40% of key miR-

NAs for each subtype (e.g. 39%, 32%, 38% and 43% for classical, 

mesenchymal, neural and proneural subtypes, respectively) were 

subtype specific miRNAs, whereas for COAD, 60% of total key 

miRNAs were common for at least two subtypes.  We also com-

pared the direct functional target genes of each key miRNA with 

1320 canonical pathways from BioCarta, KEGG and Reactome 

(Subramanian, et al., 2005), and biological pathways regulated by 

each miRNA at FDR < 1% (Supplementary Figures S13-15). 

Interestingly, for the COAD, we detected that most pathway-

miRNA pairs were subtype specific (Supplementary Figure S13). 

On the other hand, the neurotransmitter related pathways were 

common among subtypes of GBM (Supplementary Figure S14).  

We compared miRNA activity and patient survival information, 

and identified 16, 32, and 4 significant prognostic key miRNAs at 

5% FDR (corresponding to p-value <1.2x10-2) for OV, MSI/CIMP 

subtype of COAD, and Proneural subtype of GBM, respectively 

(Supplementary Figures S19A, S20A, and S21A, Table 1, and 

Supplementary Table S6).  To test whether these prognostic key 

miRNAs’ activities can robust predict patient’s survival, we as-

sessed their prognostic potentials in independent cohorts with 

miRNA and gene expression profiles  (Supplementary Table S3).  

Results were shown in Supplementary Figures S19B, S20B, and 

S21B.  

For OV, the activities of three prognostic key miRNAs (miR-9, 

miR-519d, and miR-520d*) in TCGA data were also significantly 

associated with clinical outcome in the independent cohort data set 

(Bentink, et al., 2012) (Figure 6A).  It has been shown that miR-9 

inhibits cell growth of ovarian cancer (Guo, et al., 2009). Our re-

sult showed that the over-active group of miR-9 had better survival 

rate (Figure 6B), consistent with the previous study, while the 

expression level of miR-9 were not associated with the clinical 

outcomes.  

DISCUSSION 

We presented a novel computational approach ActMiR for infer-

ring miRNA activity and identifying key miRNAs that might caus-

ally regulate a large number of genes and applied it to multiple 

cancer types. Our approach explicitly infers miRNA activities 

instead of using miRNA expression levels as a surrogate. By ap-

plying this method to mRNA and miRNA expression profiles in 

four different cancer types, we identified 77~229 key miRNAs for 

each tumor subtype. In particular, when applied our approach to 

the TCGA breast cancer data set, we identified 85 and 96 key 

miRNAs for ER-/HER2- and ER+ breast cancers, respectively. It is 

worth to note that results based on clinical subtyping 

(ER/HER2/PR status) and molecular subtyping (PAM50 classifica-

tion) were similar (Supplementary Figure S22A and detailed in 

Supplementary Results). Key miRNAs of prognostic potentials 

were still significantly associated with survival after adjusting 

clinical/pathological parameters (Supplementary Figure S23). 

ER-/HER2- especially triple negative breast tumors are frequently 

invasive and metastatic involving biological processes such as 
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extracellular matrix remodeling. Interestingly, we identified two 

miRNAs (let-7d and let-7g) that regulated genes involved in extra-

cellular matrix. Furthermore, we showed that activities of let-7d 

were consistently associated with survival in the independent 

breast cancer studies. Our results not only support metastasis is 

associated with survival of triple negative breast cancers, but also 

show that let-7d, and let-7g are putative key regulators of metasta-

sis. Additionally, the activity of miR-18a was prognostic in all 

three independent cohorts. In addition to as potential prognostic 

biomarkers, the inferred activities of these key miRNAs in ER-

/HER2- breast cancers can also be valuable therapeutics targets as 

there are very limited therapeutic options for triple negative breast 

cancers.  

Our findings based on an unbiased systematic approach were 

supported by the previous observations based on experimental 

approach in great details (Mouw, et al., 2014; Qian, et al., 2011). 

Our analyses suggested the role of let-7g in tumor metastasis (Qi-

an, et al., 2011) and miR-18a as a malignancy promoting factor in 

breast tumors (Mouw, et al., 2014) by the miRNA activity fol-

lowed by its functional annotation and prognosis test. Furthermore, 

our result also suggested the novel role of let-7d in metastasis and 

prognosis, whereas the previous study failed to identify it because 

their study was based on the expression levels of let-7 miRNA 

family instead of miRNA activity (Qian, et al., 2011). This sug-

gests our approach based on the inferred miRNA activity will facil-

itate to find more tumor-promoting or prognostic miRNAs that 

may not be identified based on their expression levels alone.  

Different types of survival outcomes were used in the TCGA, 

Dvinge et al, and Buffa et al. breast cancer data sets. By overlap-

ping results based on these data sets, we reduced potential false 

positives, but might also miss many true positives. However, sur-

vival analyses based on both miRNA expression level and miRNA 

activities suffered the same drawback. Our result showed that there 

was no prognostic miRNA based on expression level consistent in 

multiple independent data sets while there were multiple prognos-

tic miRNAs based on activities consistent in multiple independent 

data sets, suggesting our approach based on the miRNA activity is 

robust. 

In an effort to uncover prognosis biomarkers of cancers, miR-

NAs would be a suitable candidate due to their small size resulting 

in resistant to RNase degradation (Lawrie, 2008). Furthermore, we 

showed that the effect of miRNAs for prognosis was robust. We 

measured the effectiveness and robustness of miRNAs vs. CNV as 

prognostic markers using two independent cohorts of OV (Sup-

plementary Figure S24 and detailed in Supplementary Results). 

CNVs are predominant functional genomic alterations in OV (Ciri-

ello, et al., 2013). Interestingly, we found only one consistent 

prognostic CNV factor or associated mRNA factor, whereas 3 

consistent prognostic miRNAs based on activity in OV (Supple-

mentary Figure S24), suggesting a potential of miRNA activities 

as effective and robust biomarkers.  

It is worth to note that our ActMiR approach aims to infer miR-

NA activities, not to comprehensively identify miRNA targets.  

The ActMiR procedure for inferring miRNA activities is based on 

regression models.  Too few candidate targets of a miRNA includ-

ed in the ActMiR procedure may result in less robustness of miR-

NA activity estimation. On the other hand, too many low confident 

candidate targets included will bias miRNA activity estimation to 

zero.  There were multiple miRNA target prediction data bases in 

addition to TargetScan, such as miRanda (Betel, et al. 2010) and 

PITA (Kertesz, et al., 2007). Compared to other databases, Tar-

getScan covered more miRNAs (Supplementary Figure S25A). 

Also, target genes based on TargetScan were more consistent with 

experimentally derived targets (such as by CLASH containing both 

canonical and non-canonical targets (Helwak, et al., 2013), and 

PAR-CLIP containing canonical targets (Farazi, et al., 2014) 

methods) than other database (Supplementary Figure S25BC).   

Unlike TargetScan which predicted canonical miRNA targets, 

experimental approaches such as CLASH (Helwak, et al., 2013) 

revealed both canonical and non-canonical miRNA targets. How-

ever, miRNA-target gene interactions are subtype/context-specific.  

Most experimental methods covered only limited number of condi-

tions, resulting large numbers of false positives or false negative, 

which in turn affect accuracy of miRNA activity inference based 

on the regression model. Also, experimentally derived target sets 

were only available for a fraction of miRNAs. For example, 

CLASH dataset (Helwak, et al., 2013) consisted of 399 miRNAs 

and PAR-CLIP dataset (Farazi, et al., 2014) consisted of only 68 

miRNAs.  It is hard to make fair comparison of miRNA activities 

across all miRNAs if target genes for some miRNAs contain ex-

perimentally derived targets while others do not. Thus, we used 

only TargetScan but excluding other experimentally derived target 

databases in our current study.    

The target genes from the TargetScan database were mainly pre-

dicted based on seed sequences so that miRNAs in the same miR-

NA family share targets. To test whether considering miRNAs in 

the same miRNA family together enhance the ability to identify 

potential miRNA functional targets, we compared the percentage 

of negative correlations between the predicted target genes’ ex-

pression levels with the sum of the expression levels of miRNAs in 

a family or the expression levels of individual miRNAs. Our result 

(Supplementary Figure S26) showed that considering all mem-

bers in a miRNA family as a whole did not improve regulatory 

potentials of miRNAs.  On the other hand, many studies (Boyer-

inas, et al., 2010; Elefant, et al., 2011; Helwak, et al., 2013; Wu, et 

al., 2015) suggested that miRNAs in the same miRNA family have 

different binding patterns to their target genes even though they 

have the same seed sequences. Also, only a fraction of predicted 

target genes were regulated by a miRNA, reflecting to idiosyncrat-

ic patterns of miRNAs in the miRNA family. We used WLS re-

gression to account for binding affinity differences to different 

target genes when inferring a miRNA activity. As a result, differ-

ent miRNAs in the same miRNA family, which had the same set of 

target genes based on TargetScan, had different sets of functional 

targets.  For example, activities of let-7a and let-7d correlated with 

different genes among the same set of target genes (Supplemen-

tary Figure S27).  

A miRNA can post-transcriptionally regulate many target genes. 

In our validation experiment, we only tested two targets whose 

expression levels most correlated corresponding miRNA activities. 

Validation of a few target genes may not guarantee that other target 

genes will be regulated by miRNAs nor related pathways regulated 

miRNAs. Instead of genome-wide target gene validation and func-
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tional validation, which are needed in future studies, we validated 

miRNA-target relationships by showing that miRNA functional 

target sets based on independent data sets were significantly over-

lapped. 

Our regression procedure for inferring miRNA activity fully ac-

counts for post-transcriptional regulation by miRNA activity in 

contrast to directly use the expression level of either the miRNA or 

targeted genes as a surrogate for miRNA regulatory activity. In-

deed, the target genes of miRNAs that were predicted based on the 

activity and were experimentally validated in this study could not 

be detected as target genes based on corresponding miRNA ex-

pression. There are multiple experimental approaches for estimat-

ing miRNA activities. Mullokandov et al. (Mullokandov, et al., 

2012) proposed to experimentally measure miRNA activity by 

quantifying its target genes in high-throughput manners. They 

demonstrated that some highly expressed miRNAs might exhibit 

relatively weak activity, which in some cases correlated with a 

high target-to-miRNA ratio or increased nuclear localization of the 

miRNA.  Our results were consistent with their results: only one 

third of miRNAs analyzed show significant (FDR<1%) correlation 

between their expression levels and activities. However, our meth-

od is different from their method in several aspects: (1) our in-

ferred activity is cell context specific instead of synthetic environ-

ments; (2) our method is based on degradation levels of all genes 

with predicted miRNA binding motifs instead of expression levels 

of a few genes with conserved binding motifs.   

Similarly, Pecot et al. (Pecot, et al., 2013) and other papers 

showed that genes and associated pathways functionally regulated 

by a miRNA were cancer subtype specific.  Farazi et al. (Farazi, et 

al., 2014) combined experimentally defined miRNA binding sites 

and TargetScan predicted miRNA binding sites to define miRNA 

target genes and used difference of median correlations of miRNA 

target genes or miRNA non target genes with miRNA expression 

level to indicate miRNA activity.  Farazi et al. showed that only a 

fraction of target genes predicted by TargetScan were repressed by 

a miRNA and miRNA activity was cancer subtype specific.  Even 

though some conclusions were similar, our approach significantly 

differed from Farazi et al’s approach in multiple ways.  First, our 

iterative weighted regression approach for inferring miRNA activi-

ty explicitly identified functional target genes of miRNAs in each 

cancer subtype based on in vivo data.  In contrast, Farazi et al. 

inferred subtype specific target genes based on in vitro data of one 

single cell line of other cancer subtype, which contradicted with 

their own assumption that miRNA target genes were cancer sub-

type specific. Second, even though the choice of using correlation 

between gene expression and miRNA activity and target gene en-

richment test to infer functionally active miRNAs in our approach 

or correlation between gene expression and miRNA expression 

level to reflect miRNA function activity used by Farazi et al. is 

subjective, our approach is applied to multiple breast cancer data 

sets, indicating that our ActMiR approach for inferring miRNA 

activities is robust. More importantly, our approach can be readily 

applied to any cancers without the need of experimentally deriving 

miRNA targets in the specific cancer type.    

Taken together, our results underscore the value of inferring 

miRNA activity from a systems biology perspective as a promising 

strategy for investigation of its causal effects on target genes, and 

furthermore survival outcomes of cancer patients. There are several 

directions in which this approach can be extended. First, the inte-

gration of miRNA, mRNA, CNV, and other high throughput data 

into Bayesian causal models (Zhu, et al., 2012) may shed light on 

how key miRNAs are regulated and lead to further refine miRNA-

mediated regulatory networks.  It will also be interesting to uncov-

er the mechanisms underlying the miRNA functions by compari-

son of regulators between activity and expression of miRNAs us-

ing CNV or mutation data. Furthermore, a model considering sev-

eral miRNAs together is needed to investigate the cooperative or 

synergetic effects between miRNAs function. Finally, it is worth to 

further assess potentials of key miRNAs as prognosis biomarkers 

and therapeutic agents experimentally. 

ACKNOWLEDGEMENTS 

Funding: The work was partially supported by the National Insti-

tute of Health (CA163772, AG046170, CA172460, and 

HG008451).  

REFERENCES 

Arora, A. and Simpson, D.A. (2008) Individual mRNA expression profiles reveal the 

effects of specific microRNAs, Genome biology, 9, R82. 

Bentink, S., et al. (2012) Angiogenic mRNA and microRNA gene expression 

signature predicts a novel subtype of serous ovarian cancer, PloS one, 7, e30269. 

Betel, D., et al. (2010) Comprehensive modeling of microRNA targets predicts 

functional non-conserved and non-canonical sites, Genome biology, 11, R90 

Boyerinas, B., et al. (2010) The role of let-7 in cell differentiation and cancer, 

Endocrine-related cancer, 17, F19-36. 

Brennan, C.W., et al. (2013) The somatic genomic landscape of glioblastoma, Cell, 

155, 462-477. 

Buffa, F.M., et al. (2011) microRNA-associated progression pathways and potential 

therapeutic targets identified by integrated mRNA and microRNA expression 

profiling in breast cancer, Cancer research, 71, 5635-5645. 

Calin, G.A., et al. (2005) A MicroRNA signature associated with prognosis and 

progression in chronic lymphocytic leukemia, The New England journal of 

medicine, 353, 1793-1801. 

Cancer Genome Atlas, N. (2012) Comprehensive molecular characterization of human 

colon and rectal cancer, Nature, 487, 330-337. 

Cancer Genome Atlas, N. (2012) Comprehensive molecular portraits of human breast 

tumours, Nature, 490, 61-70. 

Chen, Y., et al. (2008) Variations in DNA elucidate molecular networks that cause 

disease, Nature, 452, 429-435. 

Cheng, C., et al. (2009) mRNA expression profiles show differential regulatory 

effects of microRNAs between estrogen receptor-positive and estrogen receptor-

negative breast cancer, Genome biology, 10, R90. 

Ciriello, G., et al. (2013) Emerging landscape of oncogenic signatures across human 

cancers, Nature genetics, 45, 1127-1133. 

Doench, J.G. and Sharp, P.A. (2004) Specificity of microRNA target selection in 

translational repression, Genes Dev, 18, 504-511. 

Dvinge, H., et al. (2013) The shaping and functional consequences of the microRNA 

landscape in breast cancer, Nature, 497, 378-382. 

Ebert, M.S., Neilson, J.R. and Sharp, P.A. (2007) MicroRNA sponges: competitive 

inhibitors of small RNAs in mammalian cells, Nature methods, 4, 721-726. 

Elefant, N., Altuvia, Y. and Margalit, H. (2011) A wide repertoire of miRNA binding 

sites: prediction and functional implications, Bioinformatics, 27, 3093-3101. 

Farazi, T.A., et al. (2014) Identification of distinct miRNA target regulation between 

breast cancer molecular subtypes using AGO2-PAR-CLIP and patient datasets, 

Genome biology, 15, R9. 

Gennarino, V.A., et al. (2012) Identification of microRNA-regulated gene networks 

by expression analysis of target genes, Genome research, 22, 1163-1172. 

 at T
echnical U

niversity M
unich on Septem

ber 18, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


10 

Gregory, P.A., et al. (2008) The miR-200 family and miR-205 regulate epithelial to 

mesenchymal transition by targeting ZEB1 and SIP1, Nature cell biology, 10, 

593-601. 

Grimson, A., et al. (2007) MicroRNA targeting specificity in mammals: determinants 

beyond seed pairing, Mol Cell, 27, 91-105. 

Gruvberger, S., et al. (2001) Estrogen receptor status in breast cancer is associated 

with remarkably distinct gene expression patterns, Cancer research, 61, 5979-

5984. 

Guo, L.M., et al. (2009) MicroRNA-9 inhibits ovarian cancer cell growth through 

regulation of NF-kappaB1, The FEBS journal, 276, 5537-5546. 

Helwak, A., et al. (2013) Mapping the human miRNA interactome by CLASH reveals 

frequent noncanonical binding, Cell, 153, 654-665. 

Hwang-Verslues, W.W., et al. (2011) miR-495 is upregulated by E12/E47 in breast 

cancer stem cells, and promotes oncogenesis and hypoxia resistance via 

downregulation of E-cadherin and REDD1, Oncogene, 30, 2463-2474 

Hossain, A., Kuo, M.T. and Saunders, G.F. (2006) Mir-17-5p regulates breast cancer 

cell proliferation by inhibiting translation of AIB1 mRNA, Molecular and cellular 

biology, 26, 8191-8201. 

Iorio, M.V., et al. (2005) MicroRNA gene expression deregulation in human breast 

cancer, Cancer research, 65, 7065-7070. 

Jansson, M.D. and Lund, A.H. (2012) MicroRNA and cancer, Molecular oncology, 6, 

590-610. 

Kertesz, M., et al. (2007) The role of site accessibility in microRNA target 

recognition, Nature genetics, 39, 1278-1284. 

Krol, J., Loedige, I. and Filipowicz, W. (2010) The widespread regulation of 

microRNA biogenesis, function and decay, Nature reviews. Genetics, 11, 597-

610. 

Lawrie, C.H. (2008) MicroRNA expression in lymphoid malignancies: new hope for 

diagnosis and therapy?, Journal of cellular and molecular medicine, 12, 1432-

1444. 

Madden, S.F., et al. (2010) Detecting microRNA activity from gene expression data, 

BMC bioinformatics, 11, 257. 

Mertens-Talcott, S.U., et al. (2007) The oncogenic microRNA-27a targets genes that 

regulate specificity protein transcription factors and the G2-M checkpoint in 

MDA-MB-231 breast cancer cells, Cancer research, 67, 11001-11011. 

Mouw, J.K., et al. (2014) Tissue mechanics modulate microRNA-dependent PTEN 

expression to regulate malignant progression, Nature medicine, 20, 360-367. 

Mullokandov, G., et al. (2012) High-throughput assessment of microRNA activity and 

function using microRNA sensor and decoy libraries, Nat Methods, 9, 840-846. 

Pecot, C.V., et al. (2013) Tumour angiogenesis regulation by the miR-200 family, 

Nature communications, 4, 2427. 

Qian, P., et al. (2011) Pivotal role of reduced let-7g expression in breast cancer 

invasion and metastasis, Cancer research, 71, 6463-6474. 

Scott, G.K., et al. (2007) Coordinate suppression of ERBB2 and ERBB3 by enforced 

expression of micro-RNA miR-125a or miR-125b, The Journal of biological 

chemistry, 282, 1479-1486. 

Setty, M., et al. (2012) Inferring transcriptional and microRNA-mediated regulatory 

programs in glioblastoma, Molecular systems biology, 8, 605. 

Shi, W., et al. (2011) MicroRNA-301 mediates proliferation and invasion in human 

breast cancer, Cancer research, 71, 2926-2937. 

Smith, A.L., et al. (2012) The miR-106b-25 cluster targets Smad7, activates TGF-beta 

signaling, and induces EMT and tumor initiating cell characteristics downstream 

of Six1 in human breast cancer, Oncogene, 31, 5162-5171. 

Song, S.J., et al. (2013) MicroRNA-antagonism regulates breast cancer stemness and 

metastasis via TET-family-dependent chromatin remodeling, Cell, 154, 311-324. 

Subramanian, A., et al. (2005) Gene set enrichment analysis: a knowledge-based 

approach for interpreting genome-wide expression profiles, Proc Natl Acad Sci U 

S A, 102, 15545-15550. 

Verhaak, R.G., et al. (2010) Integrated genomic analysis identifies clinically relevant 

subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, 

EGFR, and NF1, Cancer cell, 17, 98-110. 

Wu, Z.S., et al. (2010) MiR-339-5p inhibits breast cancer cell migration and invasion 

in vitro and may be a potential biomarker for breast cancer prognosis, BMC 

cancer, 10, 542. 

Wu, L., et al. (2015) MicroRNA let-7g and let-7i inhibit hepatoma cell growth 

concurrently via downregulation of the anti-apoptotic protein B-cell lymphoma-

extra large, Oncology letters, 9, 213-218. 

Yu, F., et al. (2007) let-7 regulates self renewal and tumorigenicity of breast cancer 

cells, Cell, 131, 1109-1123. 

Yu, Z., et al. (2008) A cyclin D1/microRNA 17/20 regulatory feedback loop in 

control of breast cancer cell proliferation, The Journal of cell biology, 182, 509-

517. 

Zhang, Z., et al. (2011) Epigenetic Silencing of miR-203 Upregulates SNAI2 and 

Contributes to the Invasiveness of Malignant Breast Cancer Cells, Genes & 

cancer, 2, 782-791. 

Zhang, K., et al. (2013) The collagen receptor discoidin domain receptor 2 stabilizes 

SNAIL1 to facilitate breast cancer metastasis, Nature cell biology. 

Zhao, J.J., et al. (2008) MicroRNA-221/222 negatively regulates estrogen receptor 

alpha and is associated with tamoxifen resistance in breast cancer, The Journal of 

biological chemistry, 283, 31079-31086. 

Zhou, X., et al. (2012) MicroRNA-9 as potential biomarker for breast cancer local 

recurrence and tumor estrogen receptor status, PloS one, 7, e39011. 

Zhu, J., et al. (2012) Stitching together multiple data dimensions reveals interacting 

metabolomic and transcriptomic networks that modulate cell regulation, PLoS 

Biol, 10, e1001301. 

 at T
echnical U

niversity M
unich on Septem

ber 18, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/



