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Abstract

Sexual dimorphism is one of the most pervasive and diverse
features of animal morphology, physiology, and behavior. Despite
the generality of the phenomenon itself, the mechanisms control-
ling how sex is determined differ considerably among various
organismic groups, have evolved repeatedly and independently,
and the underlying molecular pathways can change quickly during
evolution. Even within closely related groups of organisms for
which the development of gonads on the morphological, histologi-
cal, and cell biological level is undistinguishable, the molecular
control and the regulation of the factors involved in sex determi-
nation and gonad differentiation can be substantially different.
The biological meaning of the high molecular plasticity of an
otherwise common developmental program is unknown. While
comparative studies suggest that the downstream effectors of sex-
determining pathways tend to be more stable than the triggering
mechanisms at the top, it is still unclear how conserved the down-
stream networks are and how all components work together. After
many years of stasis, when the molecular basis of sex determina-
tion was amenable only in the few classical model organisms (fly,
worm, mouse), recently, sex-determining genes from several
animal species have been identified and new studies have eluci-
dated some novel regulatory interactions and biological functions
of the downstream network, particularly in vertebrates. These data
have considerably changed our classical perception of a simple
linear developmental cascade that makes the decision for the
embryo to develop as male or female, and how it evolves.
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Introduction

Developmental cascades are generally headed by evolutionary

conserved master regulators that determine the developmental fate

of a cell lineage toward distinct tissues or organs during embryogen-

esis. In contrast, determination of the development of the reproduc-

tive organs does not follow this rule. Studies over the last decades

have revealed that the gene-regulatory cascades triggering sexual

differentiation from worms and flies to mammals are composed of

substantially different factors. In particular, a remarkable diversity

of master sex-determining genes that govern the genetic hierarchies

has become apparent. On the other hand, the downstream compo-

nents seemed to be evolutionarily more conserved and appear to

converge on the regulation of a few central common effectors. A

well-known example illustrating this paradigm is the master sex-

determining gene of mammals, the SRY gene. A corresponding

homolog has not been detected outside of therian mammals (Marsu-

pials and Placentalia). Conversely, those genes that act downstream

of SRY as transcription factors (SOX9, DMRT1) or signaling path-

ways (TGF-b/Αmh, Wnt4/b-catenin, Hedgehog), and genes

involved in SRY regulation (SF1, WT1) have homologs with a

known or presumed role in gonadogenesis or gonadal differentiation

in many vertebrate species, and some even in non-vertebrate

deuterostomes and protostomes. These findings suggested that a

central paradigm of sex determination is that “masters change,

slaves remain”.

This appealing global rule was quickly commonly accepted, in

particular as the diversity at the top was confirmed experimentally

[1–3]. Remarkably, some master sex-determining genes were recur-

rently identified and became the “usual suspects” for future studies

in the search for master regulators (Table 1). All of these are genes,

or duplicates and paralogs of genes, which were previously known

to act in the regulatory network of gonad development. Much

progress has also been made in understanding some of the regula-

tory interactions of the networks or cascades governed by the long

known master sex-determining genes as well as, although to a lower

extent, for the newly detected ones. We review here the current

knowledge about the different molecules that have been demonstrated
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Glossary

Amh
Anti-Müllerian hormone
Autosome
On contrary to a sex chromosome, autosomal chromosomes
are chromosomes that are not involved in primary sex
determination
Csd
Complementary sex determiner
CTD
C-terminal domain
DKK1
Dickkopf-related protein 1
Dmd3
Doublesex and Mab-3 domain family member 3
DMRT1 or 3
Doublesex and Mab-3 related transcription factor 1 or 3
Dosage sensitive gene
Gene where the amount of gene product that determines the
phenotype is dependent on the number of copies. Two copies are
usually sufficient to establish the phenotype, while one is not
(haploinsuffiency). For example, in birds two copies of the Dmrt1 gene
trigger male gonadal development, while one copy is not sufficient to
make a male and then leads to female development
Dsx
Doublesex
Environmental sex determination (ESD)
When the sex of an individual is driven by different external factors
including temperature, pH, social interactions (dominance, stress. . .)
Esr1
Estrogen receptor 1 is the human estrogen receptor alpha
Fem
Feminizer
FGF9
Fibroblast growth factor 9
Foxl2
Forkhead box transcription factor L2
Fru
Fruitless
Fst
Follistatin
Gene regulatory network
Set of interactions between different regulators (DNA, RNA, proteins)
leading to their interdependent modulation of expression and
regulation
Genotypic sex determination (GSD)
When the sex of an individual is triggered by its genotype only (can
be mono or polygenic)
Gonadal maintenance
Establishment of a genetic programm in order to maintain the fate
and differentiation state of the different cellular types composing the
gonad, keeping either the male or female identity
Gsdf
Gonadal soma derived factor
Her-1
Hermaphroditization of XO-1
Hetero-/homo- gamety
When individuals produce gametes with either different sex
chromosomes (hetero-) or similar sex chromosomes (homo-). It is
refered to male heterogamety when males produce X and Y
chromosome-containing gametes or female homogamety for
females producing only X chromosome-containing gametes (XX-XY
sex determination system, like in most mammals). For instance in
birds, snakes and butterflies males are (ZZ) homogametic and
females (ZW) heterogametic (ZZ-ZW sex determination
system)

Heteromorphic sex chromosomes
When sexual chromosomes are morphogically distinguishable
(different degrees of heteromorphism exist, depending on the age of
the sex chromosomes)
Hhip
Hedgehog-interacting protein
HMG
High mobility group
irf9
Interferon regulatory factor 9
Mab-3
Male abnormal 3
masc
Masculinizer
Master sex-determining gene
A gene (not necessarilly coding for a protein) responsible for the
initial trigger leading to sex determination
Neofunctionalization
The process by which a gene changes its function or adds a new one
by mutations that change the structure of its gene product and/or its
expression pattern
Nix
Male-determining factor in the mosquito Aedes aegypti
NTD
N-terminal domain
piRNA
PIWI-interacting RNA
Primordial germ cells
In the embryo the precursors of the stem cells that will give rise to
the germ cell lineage. During sex determination and gonad
differentiation they become committed to either produce male or
female germ cells as spermatogonia or oogonia, which after meiosis
will become the gametes. Primordial germ cells continiously express
a certain set of genes in order to maintain their unique
undifferentiated/pluripotent state
Ptch
Patched
Rspo1
R-spondin 1
Sdc
Sex determination and dosage compensation defective
SdY
Sexual dimorphic on the Y chromosome
Sex chromosome
Chromosome involved in the primary sex determination. They usually
harbour a master sex determining gene/trigger
Sex determination
Primary mechanism leading to the expression of the phenotypic sex.
Sex determination is mostly triggered either by the genome
(genotypic sex determination) or by the environment (environmental
sex determination)
Sexual differentiation
Developmental consequence of the sex determination process.
Regroups the events dealing with internal and external genitalia and
secondary sex characters
SF1
steroidogenic factor–1
Somatic gonad
The non-germ line component of the gonad. The somatic gonad
consists of mainly two characteristic cell types in female: the
granulosa and theca cells of the ovary and three specific cell types in
the testis: Sertoli, Leydig and peritubular myoid cells
SOX9
Sry-related HMG box 9
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to determine sex in a variety of animals and what has been learned

about the maintenance of the sexual identity of ovary and testis.

Master sex-determining genes: case studies from Sox and
DM domain factors to emerging “unusual” suspects

From Sry down to Sox3 across vertebrates

SRY belongs to a family of transcription factors, which are charac-

terized by an evolutionary conserved high-mobility group (HMG

box) DNA-binding domain flanked by weakly conserved N- and

C-terminal sequences. In mice, both, gain- and loss-of-function stud-

ies have shown that SRY is not only sufficient but also necessary for

triggering testis development [4,5]. With the exception of only two

species (the mole vole Ellobius [6] and the spiny rat [7]) which have

probably lost the gene), SRY is the universal master male sex regula-

tor of all therian mammals [8]. Cytogenetic and comparative molec-

ular studies of mammalian sex chromosomes provided evidence

that SRY most probably arose after two major events: (i) a dominant

mutation of the SOX3 allele (giving rise to the proto-Y) as well as

(ii) fusion of the gene with regulatory sequences from another gene

already located on the X chromosome [9] (Fig 1). Necessarily occur-

ring before the divergence of the therian lineage, these events could

be estimated to have happened ~146–166 million years ago [10,11].

Sharing an overall identity of 67% at the amino acid level and up to

90% identity when specifically considering the HMG DNA-binding

domain, the X-chromosomal SOX3-encoded protein is most similar

to SRY [12]. Consistent with this hypothesis, the expression of SOX3

has been documented in the developing gonads of mice, chicken

[13], fish [14], and frog [15]. Only the absence of SOX3 expression

Table 1. Master sex-determining genes in vertebrates.

Master
SD gene Organism

SD
system

SD gene
ancestor

SD gene generated
from ancestor by Ancestor gene function

SRY Therian mammals XY Sox3 Allelic diversification Transcription factor, required in formation of the
hypothalamo–pituitary axis, functions in neuronal
differentiation, expressed in developing gonads

Dmrt1 Birds WZ Dmrt1 Allelic diversification Transcription factor, key role in male sex
determination and differentiation

DM-Y Xenopus laevis WZ Dmrt1 Gene duplication Transcription factor, key role in male sex
determination and differentiation

Dmrt1bY Medaka (Oryzias latipes,
O. curvinotus)

XY Dmrt1 Gene duplication Transcription factor, key role in male sex
determination and differentiation

SdY Rainbow trout (Oncorhynchus
mykiss)

XY Irf9 Gene duplication Interferon response factor, no gonadal function
known

GsdfY Luzon ricefish (Oryzias
luzonensis)

XY Gsdf Allelic diversification TGF-b factor, important role in fish gonad
development

Sox3Y Indian ricefish (Oryzias
dancena)

XY Sox3 Allelic diversification Transcription factor, required in formation of the
hypothalamo–pituitary axis, functions in neuronal
differentiation, expressed in developing gonads

amhY Perjerrey (Odontesthes
hatcheri)

XY Amh Gene duplication Anti-Muellerian hormone, growth factor

amhr2Y Fugu (Takifugu rubripes) XY Amh
receptor 2

Allelic diversification Type II receptor for Amh, important function in
gonad development, medaka mutant shows sex
reversal

Dmrt1 Chinese tongue sole
(Cynoglossus semilaevis)

WZ Dmrt1 Allelic diversification Transcription factor, key role in male sex
determination and differentiation

GsdfY Sablefish (Anoplopoma
fimbria)

XY Gsdf Allelic diversification TGF-b factor, important role in fish gonad
development

SRY
Sex determining region Y
STRA8
Stimulated by retinoic acid gene 8
Sxl
Sex lethal
TAD
Transactivation domain
TESCO
Testis-specific enhancer core
TGF-b
Transforming growth factor beta

Therian mammals
Non-egg-laying = marsupials and placental mammals
TRA
Transformer
Wnt
Wingless-related MMTV integration site
WT1
Wilm’s tumor gene 1
Xol
XO lethal
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in the developing marsupial gonad is not consistent with a

conserved role in mammalian sex determination [16,17]. Although

SOX3 has no obvious primary function in sex determination, as the

Sox3 knockout mice have no gonadal phenotype [18], the clear

evolutionary relationship between SOX3 and SRY raised the ques-

tion whether gain-of-function point mutations may account for

SOX3-induced XX male sex reversal in mice or humans. This has

been shown only recently using a transgenic mouse model in which

ectopic expression of SOX3 in the developing XX gonads resulted in

complete XX female to male sex reversal [19]. Interestingly, the XX

gonads of the transgenic hemizygous mice (Tg/+) did not only

display an up-regulation of Sox9 but also started to differentiate

Sertoli cells, forming testis cords together with the appearance of a

male-specific vasculature. Interestingly, using co-transfection assays

it was shown that, similar to SRY, SOX3 only modestly trans-

activated the SOX9 testis-specific enhancer “TESCO” element [20]

and synergistically interacted with steroidogenic factor-1 (SF1).

Interestingly, the development of SOX3-triggered testes in XX

animals was not possible in the absence of Sox9. In the same direc-

tion, patients displaying XX female to male sex reversal due to rear-

rangements of the genomic regions encompassing the regulatory

sequences of SOX3 have been reported [19]. Together, these data

suggest that gain of function of SOX3 during gonadal development

can in principle substitute for SRY to trigger testis development.

These findings provide functional evidence supporting the long-

standing hypothesis that SOX3 is the evolutionary precursor of SRY

(Fig 1). It is also reasonable to postulate that rearrangements of the

SOX3 gene might be an underappreciated cause of XX female to

male sex reversal in human patients [19].

While SRY appears to be specific to the therian mammals, there

is accumulating evidence that SOX3 has spawned independently

other sex chromosomes outside mammals. Though being expressed

in the ovary of frogs [21] without any sex-determining function

determined so far, sox3 might be involved in the switch responsible

Indian rice fish
Oryzias dancena

Mouse
Mus musculus
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Figure 1. Independent evolution of SOX3 genes toward a master sex-determining function in mice and Indian rice fish.
While SRY appears to be restricted to the therian mammals, evidence accumulates that SOX3 has independently been recruited as a “precursor” of master sex-
determining genes also outside mammals. Hence, although not a priori destined to have a direct function during sex determination, common mechanisms of evolution
seem to be repeatedly employed. Given that SOX3 is not generally expressed during gonadal induction or during gonadal development, the first step toward a sex-
determining function is a transcriptional rewiring in order to acquire a timed pattern of expression compatible with sex determination. Such transcriptional rewiring,
although not unique to SOX3 (see Dmrt1bY in medaka fish for example [56]), generally involves either fusion of the gene to new promoters or insertions of
transposable elements into their pre-existing promoter, bringing in cis-regulatory elements compatible with the timing of gonadal induction. Interestingly and
surprisingly, it seems that at least in mice and rice fish, this step alone was sufficient to endow SOX3 with a sex-determining function. Usually, the transcriptional
rewiring steps seem to be accompanied by neo-functionalization or functional specialization processes. These include specialization of the protein activity itself in
therian mammals (adapted from reference [20]) or more surprisingly adaptation of the downstream gene-regulatory network (target genes) in the Indian rice fish.
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for sex determination in the Japanese wrinkled frog (Rana rugosa).

Members of this species are either ZW or XY depending on which

side of the island they are located [22]. Curiously, the Z and X chro-

mosomes are not only homologous but share many genes with

the X chromosome of humans including the sox3 gene. Further

molecular characterization and genetic mapping could disclose the

presence of a Y-specific allele for sox3 [23,24]. So far, this is an

intriguing finding, but further studies are needed to ascertain a func-

tion for sox3 in the sex developmental decision process of the

embryonic gonad. If sox3 has such a function, then the next ques-

tion would be how the different genetic systems (ZW or XY) impact

on sox3 function.

Stronger evidence comes from the Indian ricefish (Oryzias

dancena) (Fig 1), in which the XY sex chromosome pair also shares

homology with the human X, including the presence of the sox3

gene [14]. Using positional cloning to identify the sex-determining

locus, it was found that the male-specific region on the Y chromo-

some harbors a cis-regulatory DNA segment that up-regulates

expression of the Y-chromosomal copy of sox3 during gonadal

development (Fig 1). Sex reversal of XX fish transgenic for the regu-

latory segment linked to sox3 to become males, and fish with

targeted deletion of the Y-chromosomal sox3 gene developing as

females confirmed its major role during sex determination. Further-

more, it was demonstrated that Sox3 initiated testicular differentia-

tion by up-regulating expression of gsdf, a gene highly conserved in

fish male sex differentiation pathways [14]. Interestingly, a BAC

clone carrying the sox3 gene of O. dancena was not able to induce

male gonadal development in the closely related species O. latipes,

which has a different male sex determination gene. This supports

the hypothesis that the acquisition of Sox3 function as a master sex-

determining gene has occurred with a concomitant change in the

downstream gonadal gene-regulatory network (Fig 1). Taken

together, the results provided strong evidence for the recruitment—

even in distantly related species—of Sox3 into the pathway leading

to male gonadal development.

SRY reveals plasticity of sex-determining mechanisms among
mammals Despite substantial variations in expression profiles,

structure, and amino acid sequences within mammals, the function

of SRY to activate a conserved target gene—SOX9—during testis

development appears to be conserved [20]. SRY directly binds to the

TESCO sequence of the SOX9 gene [20]. Once activated, the SOX9

protein initiates the differentiation of somatic precursors into Sertoli

cells that will then coordinate the gonadal development toward

testes [25]. In the absence of SOX9 activation, the fetal gonad will

develop toward ovaries. While the function of SRY as a regulator of

SOX9 appears to be conserved, the molecular details underlying

transcriptional regulation of SOX9 by SRY [26] are not fully known

and their conservation among mammals has not been deeply inves-

tigated. Such information would be important to evaluate whether

under a conserved master determiner, the subordinate network is

strictly conserved as well or shows variation in its regulatory inter-

actions.

In contrast to most known transcriptional activators, most SRY

proteins that have been studied in different mammalian species do

not exhibit a well-defined transactivation domain (TAD). For

instance, the N- and C-terminal domains (NTD and CTD) flanking

the evolutionary conserved DNA-binding domain of human SRY are

poorly preserved and do not seem to display any intrinsic transacti-

vation activity [27]. Hence, it is assumed that the transcriptional

activation of the human SOX9 gene by SRY is possible only after the

recruitment of a transactivating protein partner through its NTD

and/or CTD sequences [28]. However, mouse SRY does not only

lack the NTD but also displays an unusual CTD made of a bridge

domain together with a poly-glutamine (polyQ) tract encoded by a

CAG-repeat microsatellite [27]. It has recently been shown that this

poly-glutamine domain does not only prevent mouse SRY from

proteasomal degradation, but additionally functions as a bona fide

TAD. Due to the fact that it allows the direct transcriptional induc-

tion of Sox9, this poly-Q domain plays a central role for the male-

determining function of SRY in vivo [27]. Such data suggest that

during evolution, mouse SRY has gained a functional unit, which is

absent in other mammals [27]. Given such important transactivating

properties for that poly-Q CTD in mice, it is puzzling that SRY

proteins from either human or goat lacking a TAD are able to induce

testicular development in transgenic XX mice embryos [29,30]. It

appears reasonable to consider that both human and goat SRY

proteins are able to bind to the highly conserved mouse TESCO

target sequence using their respective DNA-binding HMG boxes. For

the activation of SOX9 transcription, it is assumed that transactiva-

tion is then mediated after the recruitment of a third TAD-containing

protein partner. It can be further hypothesized that acquisition of a

poly-glutamine stretch after insertion of a CAG microsatellite in a

rodent ancestor made the recruitment of a transactivating partner

unnecessary. Consequently, it is assumed that mouse SRY’s ability

to employ such a transactivating partner was lost during evolution.

This assumption is supported by the observation that the acquisition

of the poly-glutamine stretch is concomitant with an increase of

variation in different parts of the SRY protein. These include the loss

of the NTD as well as accumulation of deleterious amino acid

substitutions in the HMG box [31]. Though no longer required, the

third partner protein—probably a pleiotropic effector—may still be

expressed at the sex determination stage. It would then potentially

enable human and goat SRYs to trigger male gonadal development

when expressed in transgenic mice. This reveals an unanticipated

level of plasticity of the molecular mechanisms in the implementa-

tion of the primary sex-determining signal even among mammals.

Identification of such putative partners of SRY may help in under-

standing human primary sex reversal pathologies, which are not

explained by alterations in the known players of male sexual devel-

opment [32].

Roles of DM domain factors in sex determination, differentiation, and

gonadal maintenance

DMRT1, wherever you look Among the evolutionary conserved

downstream effector genes of genetic sex-determining cascades, the

DMRT gene family holds an outstanding position. This family is

involved in sexual development of organisms as phylogenetically

diverse as mammals, birds, fish, frogs, flies, worms, and corals

[33–38] (Figs 2 and 3). Characterized by a highly conserved DNA-

binding core motif—known as the DM (Doublesex and Mab-3)

domain—, DMRT proteins act as transcription factors. Initially

described to be involved in sex determination in worms and flies,

they have been shown to regulate diverse aspects of somatic

sexual dimorphism in these organisms. The ability to functionally
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substitute for each other across species led to the picture that sex

determination cascades might—at least partially—rely on preserved

molecules and pathways [37] (Figs 2 and 3; Table 1). Consistent

with this, many of the DMRT homologs so far characterized among

metazoans have been shown to be predominantly expressed during

the development of the primordial gonad [35]. Interestingly, DM

domain genes have also recently been described to be primarily

involved in gonadal differentiation of the male flatworm (Schmidtea

mediterranea) [39]. Similarly, in the water flea Daphnia magna, a

crustacean with environmental sex determination, DMRT homologs

have been found to trigger the switch in male versus female devel-

opment of many dimorphic structures [40]. Thus, this widespread

gene family appears to be directly involved in sexual development

in all major animal groups. Nevertheless, DM domain factors were

long considered as one of the underdogs of sexual determination

because of their recurrent subordinate role in the cascade. A deeper

interest in the field of sex determination for this group of genes only

came with the discovery of a dmrt1 homolog located on the Y chro-

mosome of the medakafish (Oryzias latipes). Resulting from a gene

duplication of the autosomal dmrt1a gene, it was designated

dmrt1bY [41] or dmy [42]. It is the only functional gene in the

Y-specific region of the sex chromosome, and it was shown to be

not only necessary but also sufficient for triggering male develop-

ment (see also Fig 2).

In humans, haploinsufficiency of the genomic region that

includes DMRT1 and its paralogs DMRT2 and DMRT3 leads to XY

male to female sex reversal [43]. This suggested that the DMRT1

gene is an important dosage-sensitive regulator of male develop-

ment in vertebrates. In chicken and other avian species and in a

fish, the smooth tongue sole (Cynoglossus semilaevis) [44]), DMRT1

is located on the Z chromosome, but absent from W, and shows

the expected expression pattern for a dosage-dependent male sex-

determining gene of birds [45] and flatfish. In chicken, it was

demonstrated through RNA interference experiments that DMRT1 is

indeed required for male gonad development [45]. While in these

organisms DMRT1 acts as a dosage-dependent male determiner, in

Xenopus laevis, a duplicated copy of dmrt1 on the W, which

lacks the dimerization domain, appears to fulfill its function as a

dominant-negative version. It is proposed to interfere with the

transcriptional activation of the target genes of Dmrt1 and thus acts

as a suppressor of male development [46].

Remarkably, all these DMRT1 genes have acquired their new

roles as master sex determination genes through different mecha-

nisms: via gene duplication and translocation in medaka, duplica-

tion, translocation and truncation in Xenopus, or loss of function of

the W allele in birds or tongue sole (Table 1).

In mice, it is apparent that Dmrt1 is not required for male

primary sex determination since newborn Dmrt1 mutants are males

with testes [36]. However, Dmrt1 is required for male gonadal dif-

ferentiation of somatic cells and germ cells [47–49]. This is a parallel

situation to mammalian Foxl2 [50], which plays a conserved role in

ovarian development but in mouse (opposed to some other

mammals, including human and goat [51]) is not required for initia-

tion of female development (see [52] for review). Targeted deletion

of mouse Dmrt1 and also of the autosomal dmrt1a of medaka,

which is not involved in primary male sex determination, have

revealed a major role in male gonad maintenance: when Dmrt1 is

lost, even in adults, this triggers sexual cell-fate reprogramming, in

which male Sertoli cells trans-differentiate into their female counter-

parts, the granulosa cells [49]. This is accompanied by testicular

reorganization toward a more ovarian morphology [49]. Ectopic DMRT1

expression in the ovary silenced the female sex-maintenance

gene Foxl2 and reprogrammed juvenile and adult granulosa cells

into Sertoli-like cells, triggering formation of structures, which

resemble male seminiferous tubules [53]. In the same direction,

deletion of the dmrt1 gene in medaka resulted in transition of the

developing testis to ovary [54]. Hence, DMRT1’s range of action is

not limited to function in initiating the male gonadal phenotype

during early development but also accounts for the livelong active

repression of the two “anti-testis” pathways of FOXL2 and WNT4/

b-catenin [49], and can do so even in the absence of the testis-

determining genes SOX8 and SOX9 (Fig 2). Additionally, mRNA

profiling revealed that DMRT1 activates many testicular genes and
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Figure 2. Gene-regulatory network of gonadal sex induction and
maintenance in vertebrates.
Schematic representation of main interactions within the regulatory network. In
gonadal fate determination of mammals, Sry initiates activation of the male
pathway (blue) through up-regulation of Sox9. Dmrt1 is not only important for
keeping the male pathway on but also in suppressing the two female networks
(red). These two female networks involve Foxl2 as well as the Wnt/b-catenin
signaling pathways. Maintenance of gonadal identity in the differentiated
gonads is a result of the cross-inhibition activities of Dmrt1 and Foxl2. A critical
equilibrium between these conflicting pathways underlies the bipotentiality of
the gonadal somatic cells. Tipping the balance into one direction or the other
will regulate the gonadal fate as a consequence of the activation of the male or
female pathways. Solid lines define negative regulations. Dashed lines designate
positive regulations. Beside the Sry ancestor Sox3 and Dmrt1, other genes (pink)
can become the master sex-determining genes by similarly impacting on the
seesaw between the male and female programme.
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down-regulates ovarian genes [53]. Interestingly, transient expres-

sion of DMRT1 has also been reported in the fetal gonad of both

sexes. The involvement in the regulation of germ cell development

in testes and ovaries indicates that DMRT1 has different functions in

males and females [55].

DMRT1 is required in female germ cells for entry into meiotic

prophase, and in male germ cells for the control of mitotic arrest

until birth [55]. Control of the decision to enter meiosis versus

mitotic arrest is mediated by the ability of DMRT1 to selectively

modulate retinoic acid signaling through context-dependent regula-

tion of STRA8. DMRT1, for example, directly represses STRA8 tran-

scription during testicular differentiation [55]. Thus, a picture

emerges where DMRT1 controls a regulatory network that on the

one hand can drive sexual fate and on the other hand can maintain

the program of sexually differentiated cells, depending on the

cellular context.

DMRT1, a jack-of-all-trade From studies in mouse and medaka

[49,53,54,56,57], it is emerging that DMRT1 holds a key position as

the master switch or gatekeeper controlling the cell fate of the

somatic cells of the gonads in female and male [33,34,53,58,59]. If

this is so, then one could ask, why such a complex regulatory

network upstream of DMRT1 would be necessary to flip the switch,

because numerous examples indicate that DMRT1 can do it on its

own as for instance in birds, Xenopus and medaka [41,42,45,46].

DMRT1 orthologs in these species appear to have undergone muta-

tional events causing either loss or gain of function. Such altered

DMRT1 activity may have favored evolutionary transitions leading

to new genetic sex determination systems (see [59] for review). The

ability of DMRT1 to toggle Sertoli/granulosa cell fate supports the

hypothesis that loss- or gain-of-function mutations in DMRT1 can

elevate it into a master sex-determining role. Such mutations would

help to promote changes between genetic sex determination mecha-

nisms that are commonly observed among vertebrates.

DMRT1 is one of the sex determination network genes that

appears more often also as master regulator (Table 1). It can be

hypothesized that its strategic position at the interface of sex deter-

mination and the process of sex-specific gonadal differentiation,

integrating a developmental fate decision with activation of organ

differentiation programmes (Fig 2), made DMRT1 suitable to be

selected either as new controller at the top or at least for being one

of the few key genes to be regulated.

Emerging suspects from gonadal TGF-b signaling

The anti-Müllerian hormone (Amh) is a growth factor from the

TGF-b family and plays a major role in mammals for the degradation

of the Müllerian duct-forming part of the female reproductive tract in

male embryos. It is not required for mouse testis development.

However, in non-mammalian vertebrates, it appears to play a central

role in testis formation. For instance, in chicken embryonic gonads,

AMH is expressed much higher in males and is predicted to be

responsible for organizing the early testis in birds [60]. In the

medaka hotei mutant, Amh signaling is disrupted by a mutation in

the type II receptor for Amh. As a consequence, a male to female sex

reversal with an over-proliferation of germline stem cells occurs [61].

Although being clearly a subordinate member of the sex regula-

tory network in mammals and at least in those species that make

use of DMRT1 as master regulator of male development, the Amh/

Amh-receptor system has, like DMRT1, sometimes made it to the

top (Table 1). In the pejerrey, a freshwater fish species from Patago-

nia, a duplicated version of the amh gene became the male sex-

determining gene on the Y chromosome [62], reminiscent of the

situation for dmrt1 in medaka fish. In the pufferfish, Fugu rubripes,

the receptor for Amh exists in two versions that differ by one amino

acid (H384D) in the kinase domain [63]. The 384His allele is a Fugu-

specific (conserved in several other pufferfishes) mutation that

confers lower activity to the receptor and is encoded on the X chro-

mosome [63]. Thus, a quantitative difference in Amh signal trans-

duction in females, which are homozygous for the mutant, versus

males, which have kept one allele of the wild-type receptor on their

Y, is responsible for male development [63]. Like in the medaka

hotei mutant [61], low signaling from the receptor is connected to

feminization of the gonad.

Gonadal soma-derived factor (Gsdf) is another growth factor

from the TGF-b family that is closely related to Amh. It is only found

in fish, and its biochemical function is not well studied. It is

assumed to have a role in male gonad development due to its

exclusive expression in the early differentiating testis of all fish

looked at so far [64–68]. Despite its proposed role in the down-

stream regulatory network, gsdf has made it up to the top in Oryzias

luzonensis [69] a sister species to medaka, and most likely also in

the sablefish [70].

Taken together, it appears that certain genes, which are members

of the regulatory network, namely sox3, dmrt1, and TGF-b signaling

components, can become the master sex-determining gene indepen-

dently again and again, while other important components of the

sex-determining pathways have not appeared as masters so far

(Fig 2 and Table 1). Whether we just have to wait for the analyses

of primary genes for sexual development in more species, in order to

put genes like foxl2, sox9, sox8, wnt4, etc., on the list of usual

suspects, or whether there is a biological reason that makes some

genes more prone to become the top regulator, is currently unsolved.

We could imagine that some genes remain “too difficult to recruit”

as master regulators, for instance if they have also non-reproductive

but vital functions in other organs. In such case, interferences between

a duplicated new master gene and its homolog may not be tolerated,

except for the case that the neo-gene would have an appropriate

gonad-specific regulation as soon as the founder event occurs. Many

of those genes that did not appear as master sex determiners so far

indeed have important functions in other tissues and organs.

Recurrent actors in invertebrate sex determination

The invertebrate ancestors of DMRT1 DM domain-containing genes

have been shown to be primarily involved in gonad differentiation

in a flatworm [39] and to direct male versus female development of

dimorphic structures in water flea [40]. Interestingly, this functional

convergence is common among insects (see [3,71–73] for reviews).

In Drosophila, the initial trigger of sex is dependent on the ratio of

the number of X chromosomes versus the haploid autosome

complement (X:A). In the female situation, an X:A ratio of one will

enable the transcription of the Sex lethal gene (Sxl), a splicing regu-

lator. The SXL protein will then promote the female-specific splicing

of Transformer (Tra), a direct downstream target, and lead to the

production of functional TRA proteins. Similarly, a complex made

of TRA and TRA-2 proteins will then favor the female-specific
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splicing of the Doublesex (Dsx, the Dmrt1 homolog) gene tran-

scripts. This results in the production of the female-type DSX protein

DSXF, which initiates up-regulation of the downstream gene-

regulatory network for female development. In males, an X:A ratio

of 0.5 will prevent the production of the SXL protein and, by default,

results in the production of the male-specific splice form of the Tra

gene. This splice variant translates into a non-functional protein due

to a premature stop codon. In the absence of TRA, by default the

male-specific splice form from the Dsx gene will be produced. The

male-type DSX protein DSXM will then orchestrate the downstream

gene-regulatory network for male development [71,74] (Fig 3).

Orthologs of Drosophila dsx have been identified and studied in a

large number of insects [75–77]. Mediation of alternative sex-

specific splicing of dsx by TRA and TRA2 is also widely conserved

in insects although variations of the sex determination systems

occur [3], suggesting that different molecular mechanisms involving

splicing activators or repressors are employed to preferentially

generate sex-specific variants of dsx mRNA [78].

Despite considerable efforts, similar sex-specific alternative splic-

ing events in the molecular regulation of sex determination of verte-

brates have not been shown. Conceptually similar is the fact that

DSX translates the sexual determination process of a cascade of

alternative splicing events into the transcriptional control of a large

number of sex-specific effector genes. Similarly, DMRT1 in verte-

brates appears to hold such a “translational” function at the inter-

face where a fate-determining signal is put into effect at the level of

sex-specific somatic cell differentiation (Figs 2 and 3).

In invertebrates, the homologs of vertebrate Dmrt1 (e.g. Dsx in

Drosophila and Mab3 in C. elegans) are typical downstream factors

of sex determination and so far, it is not reported that a DM domain
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Figure 3. Sex-determining cascades in C. elegans and some insects.
Molecular and genetic pathways leading to the formation of the gonad in the worm C. elegans, themosquito Aedes aegypti, the fly D. melanogaster, the honey bee A. mellifera,
and the silkworm B. mori. Conservation of the Dsx, Mab-3 and Dmrt1, Tra-like, (Tra-2), or Fru homologs is designated with either pale brown, pale blue, pale green, or pale
orange boxes, respectively. Tra-(1, 2 or 3) of C. elegans are not phylogenetically related to Tra of Drosophila. Fem-(1, 2 or 3) of C. elegans are not phylogenetically related to fem
of Bombyx mori. In C. elegans and D. melanogaster, a ratio between X chromosomes and autosomes determines the sex. This leads to the on/off state of Xol or Sxl, respectively.
Heterozygosity turns on Csd in the honeybee Apis melifera, leading to female development, and hemizygosity or homozygosity leaves Csd unexpressed and produces a drone.
In the mosquito (Aedes aegypti), sex determination is triggered by a dominant male determiner (Nix). Nix is a distant homolog of the splicing factor Tra-2 of Drosophila and
likely regulates the sex-specific splicing of Fru and Dsx. Sex in the silkworm Bombyx mori is controlled via a ZW sex chromosome system. Produced only from the sex-
determining locus on the W, the piRNAs suppress the male sex-determining factor MASC.
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gene has made it up to the top in any invertebrate species [3]. But

like in vertebrates, genes that are known as downstream members

in one species can also usurpate a position as an initial genetic trig-

ger in another species [3]. In insects, paralogs of the gene tra that is

a well-studied component of the sex determination cascade in

Drosophila, evolved as the master sex-determining switch gene in

the housefly (Musca domestica), a wasp (Nasonia vitripennis), and

the honeybee (Apis mellifera) [72,79,80]. In this regard, studies

about complementary sex determination in the honeybee give excit-

ing insights into how molecular diversity of regulatory pathways

can evolve [81,82], as discussed in more detail below.

Complementary sex determination in honeybees uses a conserved
module from chromosomal sex determination Genetic sex determi-

nation in the honeybee does not depend on the presence of

hetero- or homomorphic sex chromosomes with different genetic

compositions but rather follows a haplodiploid mode. Males develop

from haploid unfertilized eggs, while diploid fertilized eggs develop

into females. Hence, male or female sexual development occurs as

the result of a signal originating from either a single or two different

alleles from one gene, called complementary sex determiner (Csd)

(Fig 3). Consequently, maleness or femaleness is determined by

either homo-, hemi-, or heterozygosity of the Csd locus. The Csd

gene products belong to an arginine-/serine-rich protein family.

Interestingly, the C-terminal end of Csd also displays high similarity

with the TRA protein, an essential downstream genetic factor of the

sex-determining pathway in Drosophila ([81] and Fig 3).

Intriguingly and in contrast to the situation in Drosophila with

Tra and other downstream genes (see Fig 3), neither transcriptional

nor splicing variations of the Csd gene could be detected as sex-

specific triggers. It is currently presumed that the regulation of the

downstream regulatory network is mediated by the tendency of the

CSD proteins to form heterodimers. Interestingly, the sex determina-

tion locus of the honeybee harbors a second gene also required for

sex determination: feminizer (Fem) [82]. Further, phylogenetic stud-

ies revealed that Fem—as Csd—is also a close homolog of the Tra

gene from Drosophila. It has been shown that Csd arose after dupli-

cation of the Fem gene 10–70 million years ago while the honeybee

lineage was specifying. Knockdown experiments using RNA interfer-

ence (RNAi) of either Csd or Fem resulted in female to male pheno-

typic sex reversions, implying that both factors are required for sex

determination in the honeybee downstream of sex-specific splicing

of the Fem gene by the CSD protein ([81,83] and [3] for review).

The situation in the honeybee resembles the roles of dmrt1 in

medaka and Xenopus and of amh in the pejerrey: A highly

conserved downstream component of the network underwent a

gene duplication, and then, one of the duplicates evolved a new

function at the top of the cascade (Figs 2 and 3).

Another usurpator in mosquito? In the yellow fever mosquito,

Aedes aegypti, like Drosophila a member of the order Diptera, sex is

dependent on the presence or absence of a Y chromosome. Recent

work has uncovered the molecular nature of the male-determining

gene [84]. Intriguingly, this gene, called Nix, shows some sequence

similarity to the Tra-2 gene. This gene in Drosophila melanogaster is

a downstream member of the sex determination cascade. Further

downstream in the fruitfly cascade are the Fru and Dsx genes, and

also in Aedes aegypti, both genes are regulated by the Tra-2

homolog Nix (Fig 3). It is tempting to propose that in the mosquito,

we have another example of a subordinate sex determination gene

that has made it to the top.

The “unusual” suspects

All the above discussed cases of turnovers and novel master sex

determiners include genes that have been previously known as

components of downstreams sex determination networks, for exam-

ple, from mouse, human, Drosphila, and C. elegans. Unexpectedly,

there are two recent reports on sex-determining genes which were

neither known nor suspected to be involved in the molecular regula-

tion of this process.

An immune-related gene evolved into the master sex-determining
gene in rainbow trout In the rainbow trout Oncorhynchus mykiss,

a gene expressed only in the testis, predominantly during testicular

differentiation, was recently characterized [85]. Localized at the

sex-determining locus, this gene was named sdY for sexual dimor-

phic on the Y chromosome. Astonishingly and unlike other master

sex-determining genes characterized so far, sdY has no homology

with any known gene in sex determination pathways but with an

immunity-related gene, the interferon regulatory factor irf9 [85].

SdY arose by duplication and truncation of the autosomal irf9 gene

(Table 1). It lost the DNA-binding domain but preserved its

protein–protein interaction domain. So far, the molecular mecha-

nism through which SdY triggers male gonad development is

unknown.

A single female-specific piRNA is the primary determiner of sex in
the silk worm Sex in the silkworm Bombyx mori and all butterflies

is determined by a ZW sex chromosome system. The W chromo-

some lacks any protein-coding genes but consists predominantly of

transposons and non-coding RNAs. The only transcripts produced

from the sex-determining region on the W are PIWI-interacting

RNAs (piRNAs). After deep sequencing and isolation of dimorphi-

cally expressed RNAs, the Fem piRNA (Fem standing for “feminizing

factor”) was shown to be specifically expressed in females at all

stages of development [86]. Furthermore, Fem piRNA targets and

cleaves the Masculinizer (Masc) RNA molecule transcribed from a

gene located on the Z chromosome. Interestingly, MASC, a CCCH-

type zinc finger protein, favors male-specific splicing of Bm-dsx,

leading to male development [86]. Hence, in ZW embryos, Masc

RNA level is down-regulated by fem piRNAs, inhibiting male devel-

opment. By default, female-specific splicing of Bm-dsx then occurs,

triggering female development [86] (Fig 3). Interestingly, genetic

inhibition of Masc resulted in the premature death of ZZ embryos

before they hatched. In light of this observation, it was shown that

the MASC protein is necessary for dosage compensation in order to

lower Z gene transcription in ZZ embryos to the same level as in

ZW embryos [86]. Whether or not this sex determination pathway

is conserved across all lepidopterans remains to be explored, but

coupling two important mechanisms namely sex determination and

dosage compensation within the same genetic pathway and addi-

tionally distributing their genes onto the sex chromosomes should

strongly promote evolutionary conservation.

SdY from rainbow trout and Fem piRNA are paradigms showing

that unrelated genes are able to acquire de novo sex-determining

functions. It can, however, not be excluded that they are representing
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factors of the sex determination regulatory network that have been

overlooked so far.

Plasticity of the downstream sex determination
regulatory network

What happens when “masters change”? The slogan “slaves remain”

could imply that not much happens downstream of the changing

master sex determiner. However, the findings on the diversity of

SRY structure and its way to act as a transcriptional activator (see

above) indicate that even under the same master gene, the regula-

tory interactions of the network undergo changes and that biology is

not that simple.

In Drosophila, it has been shown that at the very downstream

end of the sex determination, cascade pathways diverge by cooption

of new effector genes [73] explaining the divergence of secondary

sex characters between species. In vertebrates, some transcription

factors like DMRT1, FOXL2, SOX9, and components of pathways

such as Rspo1/Wnt/Fst or Hedgehog of the gonadal gene-regulatory

network are well conserved on the DNA sequence level; however,

their specific functions, regulations, and interplays can be substan-

tially different. In medaka, down-regulation of the Hedgehog path-

way by Dmrt1bY was shown [87]: Transcription of the Hedgehog

receptor Ptch-2 in medaka testis is down-regulated by Dmrt1bY/

Dmrt1a, while the antagonist Hhip is up-regulated [87]. The Hedge-

hog pathway is usually up-regulated by DMRT1 in mammals. It

appears that despite its necessity for mammalian testis induction

and development and later on in regulating Leydig and myoid cell

function [88–90], the Hedgehog pathway might not only be dispens-

able during medaka male gonadogenesis and maintenance, but

needs to be suppressed by DMRT1 genes.

For R-spondin 1 (Rspo1), preferential ovarian expression is

generally described. However, such strict female dimorphism was

not observed in zebrafish [91], where the gene is also expressed in

adult testes. Here, Rspo1 has a crucial role in testis cell proliferation

[92] and it has further been shown to be involved in skin and

mammary gland differentiation in mammals [93]. Follistatin (Fst)

expression in the mouse co-localizes with Foxl2 in the ovary [94],

but in rat, it is expressed very broadly in germ and somatic cells of

the testis [95]. Sparse expression of fst was also noted in the intersti-

tial cells of the medaka testis, together with an up-regulation of fst

expression in vitro after transfection of dmrt1a [87].

SOX9 has been shown to be expressed in the developing testes

of all vertebrate embryos examined so far (see [60] for review).

However, whereas SOX9 is upstream of AMH in mammals, the

reverse applies in birds, and in medaka, Sox9 even appears to be

not involved in primary sex determination at all [96,97]. In

mammals, the current understanding is that SRY acts together with

SF1 to activate SOX9, while in return, SRY is turned off by SOX9.

SOX9 further maintains its expression in an autoregulatory loop.

SF1 is still required, but SRY becomes dispensable later during

development [20]. In non-mammalian vertebrates, Sox9 activation

must then rely on other factors than Sry. Intuitively, one could

think that DM domain genes might have taken over. However, in

chicken embryos, DMRT1 expression is occurring at least 2 days

before that of SOX9 [60], implying that other genes mediating the

DMRT1 signal to SOX9 are involved. In medaka sox9b, the

homolog of tetrapod sox9 genes is rather involved in germ cell

function than gonad determination although being expressed in the

somatic part of the primordial gonads [96]. In addition, while in

mammals, SOX9 activates the expression of FGF9 [98], the gene

does not exhibit any sexually dimorphic expression in chicken [60]

and has even been lost in fish [99]. It is obvious that the gonadal

function of SOX9 underwent several changes during vertebrate

evolution.

Genetic networks are indeed more complex than a straight top-

down scenario. We have to add now that the differences in gene

expression do not only reflect differences in cell biology and

morphogenesis of the gonads but definitively are also the conse-

quences of changes in the initial trigger for activating the network.

That master sex-determining genes are prone to regulatory putsches

in order to acquire an upstream position might only be possible

because of the flexibility of the downstream gene-regulatory

network. Hence, while Graham proposed a few years back that

“Masters change, slaves remain” [1], it is now time to change this

paradigm: “When masters change, some slaves remain, others are

dismissed or acquire new tasks, and new ones can be hired”.

Conclusions and perspectives

The variability and plasticity of the mechanisms that govern the

development of the gonads is unmet by any other organ systems or

tissues. While for instance the Pax6 gene that is a master regulator

of mammalian eye development is highly conserved (ectopic expres-

sion of human PAX6 is able to induce eye development in Droso-

phila [100]), the downstream components of this cascade are not

conserved (the induced eye is a typical composite insect eye).

Surprisingly, it appears to be the other way round for sex determina-

tion genes. The evolution of genetic interactions in the sex-deter-

mining pathways and cascades is characterized by a relative

conservation at the bottom and an apparent diversity at the top.

This was explained in a classical hypothesis by A. Wilkins with an

evolutionary scenario in which these hierarchies during evolution

build up from a common downstream component (Sox or DM

domain factors for instance), which acquires new upstream regula-

tors. Those new additions would naturally vary in different evolu-

tionary lineages [101]. Recent studies on the molecular

identification of such upstream regulators and the downstream regu-

latory network, some of which provided the backbone for this

review, brought new insights into how sexual development is regu-

lated in different organisms, and how new sex determiners have

evolved.

The “bottom-up hypothesis” formulated by Wilkins has to be

revisited now taken into account the discoveries of the new master

regulators. It seems that the master regulator/switch is not necessar-

ily elected from the existing cascade usurping the top position but

could be equally recruited from outside to accomplish a new sex-

determining function after neo-functionalization. We also have to

modify the hypothesis as we now know that in vertebrates, unlike

in invertebrates, sex determination is not brought about by a simple

linear cascade, but by a complex network of multiple regulatory

interactions. Such a network might offer multiple opportunities

where a newly added factor can trigger the outcome of the network

signal toward male or female. There is also evidence accumulating
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that regulatory cascades can become shorter, rather than being

topped up, when a new sex determiner appears, for example, in

honeybees [72,102].

Gonad development appears to cope well with such changes of

primary triggers as the many examples of different master sex regu-

lators show, which finally all guarantee the developmental switch to

either a testis or ovary. An intriguing situation has been recently

reported for zebrafish, where the laboratory strains used worldwide

have all lost their original sex-determining chromosome, but still

produce normal males or females [103]. New upstream sex deter-

miners appear to evolve quickly in those domesticated strains—

similar to a situation in the other small aquarium fish model, the

medaka [104]—which might take care in the future of the current

sex bias observed at present for many laboratory strains. These are

instances of “evolution in action,” which offer prospects to observe

in the laboratory how new sex determiners evolve and to obtain

insights into the underlying molecular mechanisms. Certainly, we

also need more information from different species about their

master sex-determining gene and how it acts on the downstream

regulatory network to obtain a reasonable understanding of the vari-

ety of sex-determining mechanisms.

Somehow unexpected are the accumulating findings that also

the downstream network is not as strictly conserved as the

“masters change, slaves remain” paradigm was imposing. Whether

these differences in the expression pattern and function are related

to specific adaptations of varying reproductive biology is a chal-

lenging question for the future. On the other hand, such changes

may be due to the impact of the new upstream regulator. Intrigu-

ingly, even in a setting of the same master sex-determining genes,

intricate differences downstream can be found, as seen for SRY in

different mammals. It has also been argued that genetic networks,

including sex determination, in general can change randomly with-

out necessarily impacting on the final phenotype and thus evolve

neutrally (see Sidebar A). Again, we need more details on the

molecular biology of the sex-determining networks from different

organisms; for instance, on a comparative basis from birds, Xeno-

pus and those fish that all use dmrt1 as their common master sex-

determining gene.

Unexpectedly, it turned out that sex determination is not only

needed as the molecular switch for the undifferentiated gonad

primordium to develop either as testis or ovary, but that the sexual

identity of the gonadal soma needs to be maintained as long as the

organ has to provide its function(s). In vertebrates, two genes that

appear to have a more downstream function in the determination

network of the embryo are the top players here: DMRT1 and FOXL2.

The dichotomous developmental potency of the gonadal soma is

apparently kept throughout the entire life. The reason for this is

unknown. In particular among fishes, hermaphroditic species are

common. Those fish can switch during their reproductive life from

one sex to the other. Whether these organisms have found a way to

make a controlled use of the livelong plasticity of the gonad or

whether the plasticity seen even in the mammalian gonads is a relic

of an evolutionary past are just two questions that emerge from

those new findings.

The recent progresses reviewed here have considerably increased

our understanding of the diverse molecular mechanisms underlying

the amazing variation and plasticity of sexual development, and we

might so far just only see the tip of the iceberg.

Sidebar A: Evolutionary concepts for the diversity of sex deter-
mination mechanisms

Sex determination is a very basal and ubiquitous developmental
process, and the fact that it is so variable even between closely related
organisms poses many fascinating questions. Molecular biologists are
most interested to understand how these different mechanisms work,
what factors are involved, upstream and downstream, and how they are
regulated to bring about the amazing plasticity of the respective genetic
cascades and networks. These are the so-called proximate causes of the
observed variability. Organismic biologists focus more on the “ultimate”
causes that lead to the changes from one to the other sex determina-
tion mechanism within and between certain lineages. A number of
scenarios and hypotheses have been put forward to explain which
evolutionary forces could favor such transitions and turnovers [105].
One explanation is that a mutation, which creates a new sex determi-
nation mechanism, gives a fitness advantage to its carriers. Then, by
natural selection, this mutation will sweep through the population and
take over, while the previous mechanism is lost [106]. Such new muta-
tions could for instance alter the sex ratio, and if the ecological condi-
tions favor such a bias, this mutation will be beneficial. As another
example, a new sex determination mechanism might for instance be
more efficient under certain ecological conditions, for example, works
faster or is less or more susceptible to environmental influences.
If sex is determined through sex chromosomes, a common feature is
the reduction of recombination around the sex-determining gene,
which spreads out from there over almost the entire chromosome
and finally fully arrests. As a consequence, deleterious loss-of-function
mutations will accumulate in genes on the chromosomes carrying the
sex locus [107]. Hence, such a chromosome will become less fit in
evolutionary terms because of its mutational load, and once these
disadvantages accumulate to a critical level, an emerging “younger”
and less degenerated sex chromosome can take over [108].
Another hypothesis is based on linkage of sex-determining genes to
other genes that favor one sex or are antagonistic to the other sex
[109]. Many examples exist for such genes, which for instance are
involved in gonad development or sexual dimorphism. If such a gene
is closely linked to a gene that can influence the developmental deci-
sion toward male or female, the sex-determining gene will be co-
selected as a hitchhiker and enjoy the fitness advantage that the
linked sex beneficial or sexually antagonistic gene has under condi-
tions of natural or sexual selection.
Rather than postulating a fitness advantage for the emerging novel sex
determination mechanism, it is also considered that neutral or non-
adaptive processes of genetic drift, mutation, and recombination can be
instrumental. Such hypotheses are based on an analysis by M. Lynch how
in general genetic networks can evolve [110]. He pointed out that only
the final gene product of a genetic network or cascade produces a pheno-
type, which is exposed to selection. Thus, many changes in the upstream
system can occur without necessarily altering the finally expressed
phenotype. These changes can become fixed in a population by random
genetic drift. As a result, the regulatory network has changed, but the
phenotype will be constant. Such considerations were then applied to the
genetic cascades and networks that govern sex determination [102].
Indeed, the final outcomes of the sex determination process are morpho-
logically and functionally surprisingly similar in related groups of organ-
isms, which have very different master sex regulators [111].
For all of these theoretical explanations, which appear to be to a certain
extent opposing or even contradictory, examples to support them can
be found. A single one obviously cannot explain all the different cases of
sex determination systems and the multitude of turnovers and transi-
tions. Rather than being alternatives, they may be complementary to
explain the biodiversity of mechanisms that make the undifferentiated
gonad anlage of an embryo to develop toward testis or ovary. To further
our understanding of the trajectories that lead to the evolution of
diverse mechanisms, we need not only detailed molecular knowledge
about the proximate causes of such diversity but also more information
about the ecology and population genetics under which they occur.
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