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Abstract
Real-time quantitative polymerase chain reaction is 
subject to inhibition by substances that co-purify with 
nucleic acids during isolation and preparation of samples. 
Such materials alter the activity of reverse transcriptase 
(RT) and thermostable DNA polymerase enzymes on 
which the assay depends. When removal of inhibitory 
substances by column or reagent-based methods fails 
or is incomplete, the remaining option of appropriately, 
precisely and differentially diluting samples and standards 
to non-inhibitory concentrations is often avoided due to the 
logistic problem it poses. To address this, we invented the 
PREXCEL-Q software program to automate the process of 
calculating the non-inhibitory dilutions for all samples and 
standards after a preliminary test plate has been performed 
on an experimental sample mixture. The SPUD assay was 
used to check for inhibition in each PREXCEL-Q-designed 
qPCR reaction. When SPUD amplicons or SPUD amplicon-
containing plasmids were spiked equally into each qPCR 
reaction, all reactions demonstrated complete absence 
of qPCR inhibition. Reactions spiked with ~15,500 SPUD 
amplicons yielded a Cq of 27.39 ± 0.28 (at ~80.8% efficiency), 
while reactions spiked with ~7,750 SPUD plasmids yielded 
a Cq of 23.82 ± 0.15 (at ~97.85% efficiency). This work 
demonstrates that PREXCEL-Q sample and standard 
dilution calculations ensure avoidance of qPCR inhibition.

Introduction
In recent years, although qPCR has garnered the reputation 
as the foremost quantitative technique for exploring gene 
expression, evaluating pathogen load, detecting single 
nucleotide polymorphisms for allelic discrimination analysis 
and analyzing miRNA and gene copy numbers, the quality 
of its performance is altered by inhibitory substances or 
conditions. Inhibitory substances are introduced into the 
tested samples by the method of isolation, the type of 
sample used for nucleic acid isolation, as well as other 
manipulations preceding qPCR (such as phenol-chloroform 
precipitation, sample concentrating methods and nuclease 
treatments) (Bustin, 2008). To minimize inhibitory biological 
material carryover into samples due to the method of 
isolation, various companies have offered different column-
based purification kits, depending on the type of sample 
from which the nucleic acids are to be extracted (Wilson, 
1997; Bustin, 2003; Bustin, 2005; Bustin, 2008; Bustin et 

al., 2009).  For instance, Qiagen offers several varieties of 
olumns for RNA, DNA or viral RNA or DNA isolation, and 
PAXgene™ technology for blood samples and MO BIO 
Laboratories has developed a line of products which remove 
inhibitory material from DNA that has been extracted from a 
variety of biological sources. Currently, there are no simple 
effective solutions for high-throughput extractions of (e.g.) 
plant leaf DNA, and for this and other sample types, many 
methods require multiple steps and additional expensive 
materials. Older methods are laborious, and kits based on 
spin columns are expensive and are often not designed with 
high-throughput potential in mind. In addition, column-based 
methods often yield DNA or RNA samples that still contain 
inhibitory polyphenolics and polysaccharides – making such 
nucleic acid isolates unsuitable for PCR amplification.
 The challenge of eradicating qPCR inhibition has 
persisted as a main problem with the assay since its 
inception. According to a recent survey of working practices 
among 100 qPCR users, 94% choose to deal with inhibition 
by ignoring it entirely (Bustin, 2005; Nolan et al., 2006). 
This represents one of the most serious and persistent 
deficiencies in qPCR which needs to be responsibly 
addressed (Bustin et al., 2005; Nolan and Bustin, 2009; 
Bustin et al., 2009). Some of the materials capable of 
inhibiting reverse transcriptase (RT) and/or DNA-dependent 
DNA polymerase (e.g. Taq and others) have been identified, 
while many of them remain as yet unknown. Too much RNA 
and too much DNA loaded into the reactions themselves 
have been demonstrated to entirely shut down the RT and/
or PCR phases of the qPCR (Gallup et al., 2006). Outside of 
this, substances such as IgG, porphyrin, heme, fat, heparin, 
humic and tannic acids, polyphenolics (including tannin), 
dextran sulfate, Ca+2, polysaccharides and various proteins 
are thought to be among the known culprits of unwanted 
qPCR inhibition (Tichopad et al., 2004; Gallup et al., 2006; 
Gallup et al., 2008). Succinctly, if a target (quantification 
cycle) Cq value can appear anywhere from 13 to 50 on 
account of varying degrees of inhibition alone, it is always 
important to examine and/or eliminate inhibition from qPCR 
(Bustin, 2005; Nolan et al., 2006; Gallup et al., 2006; Bustin, 
2008). 
 Since no method is entirely effective at removing 
inhibitory substances from all samples, once a method of 
nucleic acid sample isolation and subsequent qPCR have 
been worked out, testing for the presence of inhibition in 
each sample is necessary since every sample (even from 
the same biological source material) can still harbor differing 
degrees of inhibitory material. To this end, the SPUD assay 
was developed (Nolan et al., 2006). The SPUD assay 
utilizes a synthetic amplicon based on a potato sequence 
in conjunction with a 6FAM-TAMRA hydrolysis probe and 
associated primers to amplify the SPUD sequence during 
qPCR (this would most likely work in a SYBR Green-based 
qPCR format, but it has not yet been tested as such). 
The SPUD amplicon is spiked in equally into all samples 
and standards preceding qPCR, and, in the presence 
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of inhibition, qPCR reactions will demonstrate higher Cq 
values for the SPUD amplicon than will uninhibited reactions 
(Nolan et al., 2006; Nolan and Bustin, 2009). PREXCEL-Q 
is a qPCR software program that, among its other functions, 
identifies dilution parameters for all samples and standards 
that avoid qPCR-inhibitory phenomena. The SPUD assay 
was thus used in this study to critically test and corroborate 
the reported ability of the PREXCEL-Q program to avoid 
inhibition in qPCR samples and standards (Grubor et al., 
2004; Gallup et al., 2005; Gallup et al., 2006; Kawashima et 
al., 2006; Lazic et al., 2007; Gallup et al., 2008; Olivier et al., 
2009; Sow et al., 2009; Sponseller et al., 2009).
  
Materials and Methods
RNA isolation
In this study, we set out to examine the presence or absence 
of inhibition in sheep lung total RNA isolates subjected 
to one-step qPCR (using Invitrogen’s SuperScript™ III 
Platinum® One-Step quantitative RT-PCR System with ROX 
kit, Cat. No. 11745) using sample and standard dilutions 
calculated by the PREXCEL-Q software program (Gallup et 
al., 2006; Gallup et al., 2008; Sow et al., 2009). Total RNA 
was isolated from twelve lamb lung samples as follows:  
1 to 3 g of lung (stored immediately at -80°C after being 
flash-frozen in cryovials in liquid nitrogen post-necropsy) 
were initially weighed and then homogenized (in 50 ml 
conical centrifuge tubes) for 30 seconds in 3 ml of QIAzol 
reagent (Qiagen) using an Omni TH homogenizer (Omni 
International). A small portion of each resulting homogenate 
was then further diluted with QIAzol to obtain secondary 
sample slurries that were all ~0.091 g tissue per ml. These 
secondary slurries were briefly vortexed, allowed to sit for 
5 minutes, and 200 µl nuclease-free chloroform (Fisher) 
was added to each, shaken vigorously for 15 seconds, 
allowed to sit for 3 minutes at room temperature, and then 
spun at 12,000 x g for 10 minutes at 4°C. The top, aqueous 
layers were transferred into fresh 1.6-ml microfuge tubes 
(MidSci) already containing 500 µl nuclease-free 2-propanol 
(Fisher). Samples were briefly vortexed, and allowed to sit 
at room temperature for 10 minutes. This was followed 
by centrifugation at 16,300 x g for 15 minutes at 4°C. The 
2-propanol was discarded and the pellets obtained were 
washed twice with pre-cooled (-20°C) 75% nuclease-free 
ethanol, centrifuging at 12,000 x g for 10 minutes at 4°C 
after each wash. The ethanol washes were carefully poured-
off, and pellets were allowed to air-dry under a fume hood 
for ~30 minutes. 170 µl nuclease-free water (Ambion) was 
added to each pellet, samples were vortexed briefly and 
then heated to 65°C for 5 minutes to aid in RNA dissolution. 
70 µl of each (170 µl) sample isolate was then subjected to 
(Ambion) TURBO-DNase treatment which was carried out in 
200 µl thin-walled PCR tubes (MidSci). Each 100 µl DNase 
treatment reaction contained: 70 µl RNA sample, 10 µl 10X 
TURBO DNase buffer and 20 µl TURBO DNase (2 U/ µl) 
enzyme. Once assembled, all DNase-treatment reactions 
were briefly vortexed and spun down, then incubated for 
30 minutes at 37°C in a Perkin Elmer GeneAmp 2400 
thermocycler. Tubes were removed from the thermocycler 
and 10 µl of the TURBO Inactivation Reagent suspension 
was added to each 100 µl reaction and tubes were then 
vortexed every 10 seconds for the next 2 minutes at room 
temperature (to keep the Inactivation Reagent suspended). 
This was followed by a 3-minute, 10,000 x g centrifugation 

at room temperature (to pellet the Inactivation Reagent) 
after which 80 µl was carefully removed from the very top 
of each final 110 µl DNase-treatment reaction. These 80 µl 
DNase-treated sample aliquots were then diluted 1:10 in 
fresh nuclease-free 1.6 ml tubes (MidSci) by the addition 
of 708 µl Ambion nuclease-free water and 12 µl of RNase 
inhibitor (RNaseOUT™, Invitrogen, Cat. No. 10777-019).

Custom NanoDrop zeroing buffer
A water sample was prepared in tandem with the RNA 
samples and subjected to the exact same DNase-treatment 
regimen as the RNA samples for the purpose of creating the 
proper zeroing (blanking) buffer for NanoDrop assessments. 
Prior to measuring samples by NanoDrop, each sample 
was diluted ~1:3.2 (50 µl sample + 109 µl nuclease-free 
water). NanoDrop ng/µl assessments were converted 
to their corresponding RNA A260nm readings by dividing 
each ng/µl value by the RNA extinction coefficient, 40 µg/
mL/1 o.d. @ 260nm·cm. The entire sample dilution factor 
(since resolubilization in 170 µl of nuclease-free water) was 
thus calculated to be 1:50 for each sample at the time of 
NanoDrop assessment (e.g. DNase treatment resulted in 
sample dilution of ~0.64, and subsequent dilution with water 
and RNaseOUT™ resulted in another 0.1 dilution, and 
the final, additional ~1:3.2 dilution (preceding NanoDrop 
readings) yielded an overall sample dilution of 0.02, or 
“1:50”). Sample purity was also determined by absorbance 
readings at 260 and 280 nm, and all samples demonstrated 
purity (A260:280nm) ratios of 2.0 or higher (Table 1).

Previously-established PREXCEL-Q parameters for 
sheep lung RNA isolates used in qPCR using the “Stock I 
approach”
PREXCEL-Q was used previously with numerous mRNA 
targets in sheep lung total RNA isolates used to determine 
the valid working ranges for all samples and standards.
(Gallup et al., 2005; Gallup et al., 2006; Olivier et al., 2009; 
Sow et al., 2009). Standards prepared from sample mixtures 
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(called “Stock I”) appeared to behave without qPCR inhibition 
when used at dilutions of 1:500 and above. Therefore, when 
setting up the qPCR for this study, standards were prepared 
in the range of 1:500 to 1:8000, representing a range of 3.12 
ng/µl to 0.195 ng/µl in-well. Individual samples were diluted 
to 8.12 ng/µl and 6 µl of each sample was added per 25 
µl reaction volume. All RNA samples were thus 1.95 ng/µl 
per well during qPCR assessment for the presence of three 
targets:  ovine intercellular adhesion molecule-1 (ovine 
ICAM-1), SPUD 101 bp amplicon (Nolan et al., 2006), and 
the very same SPUD 101 bp amplicon cloned into a double-
stranded DNA plasmid construct made by Integrated DNA 
Technologies in Coralville, Iowa) (pIDTSMART-KAN, IDT).

Primers, probes, targets, amplicon and plasmid
The ovine ICAM-1 primers and probe (synthesized by ABI) 
were as follows:  
ICAM-1 Fwd primer:  5’-CAAGGGCTGGAACTCTTCCA 
ICAM-1 Rev primer:  5’-GGTCGATGGCAGGACATAGG
ICAM-1 probe: 6FAM-CACCTCAGCCCCCAGGAAGCTCC-
TAMRA     SPUD primers and probe (synthesized by ABI): 
SPUD Fwd primer: 5’-AACTTGGCTTTAATGGACCTCCA
SPUD Rev primer:  5’-ACATTCATCCTTACATGGCACCA
SPUD probe:  
6FAM-TGCACAAGCTATGGAACACCACGT-TAMRA.      
SPUD 101 bp amplicon (sequence from Nolan et al., 2006) 
(synthesized by IDT for this study):
5’-AACTTGGCTTTAATGGACCTCCAATTTTGAGTGTGCA
CAAGCTATGGAACACCACGTAAGACATAAAACGGCCAC
ATATGGTGCCATGTAAGGATGAATGT

Preparation of amplicon and plasmid for qPCR

SPUD amplicon dilution. We received 0.07 mg of the 101 
bp SPUD amplicon (Nolan et al., 2006) from IDT. Its molar 
extinction coefficient was listed as ε = 999100 L/(mole·cm), 
and its MW = 31,234.3. The amplicon arrived as a lyophilate 
and was diluted with 1500 µl Ambion TE pH 8.0 to yield a 
stock solution that was ~9 x 1011 amplicons/µl. NanoDrop 
analysis indicated that the solution was 46.7 ng/µl. This 
sample was diluted to 104,000 amplicons/µl with Ambion 
nuclease-free water.
 
SPUD plasmid dilution. We received 0.0058 mg of the 101 
bp SPUD amplicon-containing plasmid from IDT. Its MW 
was given as 1,237,604.8 g/mole. The plasmid arrived as 
a lyophilate and was diluted with 40 µl Ambion TE pH 8.0 
to yield a stock solution that was ~7 x 1010 plasmids/µl. 
NanoDrop analysis indicated that the solution was 144.3 
ng/µl. This sample was diluted to 52,000 plasmids/µl with 
Ambion nuclease-free water.

(Note:  to ensure precision throughout, all pipette volume 
settings were confirmed for exactness by weighing the 
amounts of water (at standard temperature and pressure 
using an analytical scale) delivered by each pipette at 
each different setting. We have found this quality control 
measure to be an absolute requirement for all pipette-types; 
surprisingly, many researchers avoid doing this).

One-step qPCR
The SPUD amplicon and plasmid stock solutions were 
prepared for use in qPCR as follows:  104.2 µl of 50 mM 

MgSO4 solution (from the Invitrogen 11745-500 kit) was 
added to 20 µl of the 104,000 SPUD amplicon/µl solution, 
and to 20 µl of the 52,000 SPUD plasmid/µl solution. 67 
µl of these solutions were added to respective master mix 
amounts prepared for 25 µl-size reactions for 24 samples 
(each in duplicate; 50 µl total). Final reaction amounts 
applied to the plate were 20 µl. Each 20 µl reaction (for 
SPUD amplicon determination) contained ~15,500 SPUD 
amplicons, whereas each 20 µl reaction (for SPUD plasmid 
determination) contained ~7,750 plasmids (since each 
plasmid molecule has two copies of SPUD target). Paired 
target reactions were run for ovine ICAM-1 as a positive 
qPCR control. The reactions contained either 1) water 
as sample (for no-template control “NTC” wells) + SPUD 
amplicon or plasmid, 2) sheep lung standard RNA sample 
+ SPUD amplicon or plasmid, or 3) one of five single sheep 
lung RNA samples (B, C, F, H or J) + SPUD amplicon or 
plasmid. Thermocycling was performed on a GeneAmp 5700 
(ABI) as follows:  15 min. at 55°C (for reverse transcription), 
2 min. at 95°C for Taq activation and then 50 cycles of [15 
sec. at 95°C; 30 sec. at 60°C].

Results 
Cq values were processed using custom Excel files and 
efficiency-of-amplification (E) values for each target was 
calculated using the formula:  [10(-1/m) -1] (Livak et al., 2001). 
According to standard curves generated for each target, 
ICAM-1 amplified at an E of ~105.4% (Figures 1 and 2), the 
SPUD amplicon amplified at an E of ~80.8% (Figures 3 and 
5) and the SPUD plasmid amplified with an E of ~97.85%  
(Figures 2 and 5).
 All samples spiked with SPUD amplicon prior to cycling 
appeared around a very tight Cq center of 27.387 ± 0.284. 
All samples spiked with the SPUD plasmid prior to cycling 
appeared around a very tight Cq center of 23.823 ± 0.15.  
 The fact that the SPUD amplicon stably amplifies 
at a significantly lower efficiency than does the SPUD 
amplicon-containing plasmid, we feel, shines light on a 
large misconception in qPCR. It is often assumed that 
the same target sequence, no matter how it is presented 
in the qPCR, should amplify with the same efficiency. We 
have never found this to be true in our work. E.g. when 
we compared endogenous sheep lung VEGF RNA splice 
variant targets to the same targets contained in plasmids 
(using both plasmids and sample at non-inhibitory 
dilutions; as established by PREXCEL-Q), the same target 
demonstrated a different efficiency of amplification. Since 
inhibition had been eliminated from these assays, there 
must be different geometries at work by which the same 
target, presented to qPCR in different contexts, will amplify 
at different efficiencies accordingly (J.M. Gallup, A. Van 
Geelen, unpublished). The differing efficiencies in such 
cases are thus not due to one target reaction (i.e. for the 101 
bp SPUD amplicon) being inhibited while the other (SPUD 
plasmid) is not, rather, the geometry of target:primer-probe 
interaction (at the chosen thermocycling conditions) is most 
likely more optimal for the SPUD plasmid reaction than it 
is for the SPUD amplicon reaction. That is to say, at the 
conditions chosen, one reaction’s template context is more 
kinetically-conducive to efficient qPCR than the other, even 
though the same target is being amplified in both cases. It 
could be that the SPUD target, when held within the more 
thermodynamically stable context of a plasmid, is more 
readily amplified than is the SPUD amplicon itself.
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Previously-established PREXCEL-Q parameters for sheep 
lung RNA isolates used in qPCR using the “Stock I approach” 
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construct made by Integrated DNA Technologies in Coralville, 
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 An additionally interesting detail which surfaced as 
a result of this study was the observation that the NTC 
reactions (for SPUD amplicon and plasmid reactions) yielded 
Cq values that were signifi cantly larger than the average 
of their respective sample-containing target reactions - 
suggesting that the samples, in and of themselves, harbor 
a slight qPCR-stimulatory characteristic. The average NTC 
Cq for the SPUD amplicon was 0.542 Cq units later than 
all other corresponding reactions spiked equally with SPUD 
amplicon, and the average NTC Cq for the SPUD plasmid 
was 0.426 Cq units later than all other corresponding 
reactions spiked equally with SPUD plasmid.
 In summary, these fi ndings support our claim that 
PREXCEL-Q-calculated nucleic acid sample and standard 
dilutions for qPCR, based on the “Stock I approach” 
(Grubor et al., 2004; Gallup et al., 2005; Gallup et al., 2006; 
Kawashima et al., 2006; Lazic et al., 2007; Gallup et al., 
2008; Olivier et al., 2009; Sow et al., 2009; Sponseller et al., 

2009), avoids qPCR inhibitory behavior in all fi nal reactions 
(Gallup et al., 2008; Sow et al., 2009). Because of this and 
other aspects, we recommend the use of PREXCEL-Q in all 
laboratories performing qPCR of any kind.
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