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The capacity of highly parallel sequencing technologies to 
detect small RNAs at unprecedented depth suggests their 
value in systematically identifying microRNAs (miRNAs). 
However, the identification of miRNAs from the large pool 
of sequenced transcripts from a single deep sequencing run 
remains a major challenge. Here, we present an algorithm, 
miRDeep, which uses a probabilistic model of miRNA 
biogenesis to score compatibility of the position and frequency 
of sequenced RNA with the secondary structure of the miRNA 
precursor. We demonstrate its accuracy and robustness using 
published Caenorhabditis elegans data and data we generated 
by deep sequencing human and dog RNAs. miRDeep reports 
altogether ~230 previously unannotated miRNAs, of which four 
novel C. elegans miRNAs are validated by northern blot analysis.

Animal genomes harbor numerous small, noncoding miRNA genes 
believed to post-transcriptionally regulate many protein-coding genes 
to influence processes ranging from metabolism, development and 
regulation of the nervous and immune systems to the onset of can-
cer1. Despite concerted efforts to discover and profile miRNAs, even the 
number of miRNAs in the human genome remains controversial, with 
estimates ranging from a few hundred2 to tens of thousands3. Traditional 
experimental approaches to miRNA discovery have relied on cloning 
and Sanger sequencing protocols4 and human and murine miRNAs have 
been profiled in hundreds of cDNA libraries from dozens of tissues5.

However, the vast dynamic range of miRNA expression (from tens 
of thousands to a few molecules per cell) complicates profiling of  
miRNAs expressed in low numbers. A complementary approach, 
involving miRNA discovery by computational predictions that analyze 
genomic DNA for structures that resemble known miRNA precursors6, 
is compromised by sensitivity problems and substantial numbers of 
false positives6. Therefore, purely computational approaches require 
experimental follow-ups, which are again difficult for miRNAs with 
low expression levels in the sample.

‘Deep-sequencing’ technologies have opened the door to detecting and 
profiling known and novel miRNAs at unprecedented sensitivity. Next 
generation sequencing platforms, such as those from Solexa/Illumina 

and 454 Life Sciences/Roche, can sequence DNA orders of magnitude 
faster and at lower cost than Sanger sequencing and are evolving so 
rapidly that increases in sequencing speed by at least another order of 
magnitude seem likely over the next few years. Although the Solexa/
Illumina system can produce ~32 million sequencing reads in one run, 
read length is currently limited to 35 bp. In contrast, the current 454 
platform yields reads up to 200 bases each, although the number of reads 
is an order of magnitude less than that of Solexa/Illumina. The nature 
of sequencing errors also contributes further to the different output 
characteristics of the two approaches.

Despite the ability of both technologies to sequence—and thus 
to detect—miRNAs at previously unmatched throughput, deep 
sequencing presents formidable computational challenges and suf-
fers from biases such as those arising from the preparation of small 
RNA libraries. Even mapping deep-sequencing reads to the genome 
is itself not trivial, as no animal genome besides that of C. elegans, 
has been sequenced completely. Moreover, sequencing errors and 
polymorphisms, as well as RNA editing and splicing are but some of 
the factors that contribute to ambiguity. Although currently almost 
all of these problems remain mostly unsolved, deep sequencing can 
successfully survey the small RNA contents of animal genomes with 
unmatched sensitivity7–15.

When profiling small RNAs with deep-sequencing technology, 
separating miRNAs from the pool of other sequenced small RNAs or 
degradation products is a central problem that is often not described 
or only partially addressed8,9. Furthermore, despite a growing need to 
analyze deep-sequencing data, there is no publicly available algorithm 
to detect miRNAs in these data.

miRDeep, our publicly available software package, can be used to 
solve this problem at least in part. Importantly, it also includes stringent 
statistical controls to estimate the false positive rate and the sensitivity 
of miRDeep predictions. Therefore, users can not only run miRDeep on 
their own deep-sequencing data to detect known and novel miRNAs, 
but can also estimate the quality of their results. At the heart of miR- 
Deep is the idea of detecting miRNAs by analyzing how sequenced RNAs 
are compatible with how miRNA precursors are processed in the cell. 
As deep sequencing permits statistical analysis of this model, one can 
assign a score of the likelihood that a detected RNA is indeed a mature 
miRNA. Therefore, the foreseeable advances in sequencing capacity of 
deep-sequencing technologies should further boost the power of miR- 
Deep. In order to address an ongoing discussion about the importance 
of nonconserved miRNAs16 and to be as unbiased as possible, we 
designed miRDeep to detect miRNAs without cross-species compari-
sons. Finally, given the rapid evolution of deep-sequencing technology, 
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we designed miRDeep to be as flexible as possible and tested it using 
both Solexa- and 454-derived data from human, the domestic dog 
and C.elegans—animals from the two main branches of Bilateria, 
representing very different genomic complexity.

RESULTS
miRDeep scores according to a model of miRNA biogenesis
Metazoan miRNA genes are transcribed either as single genes, or in 
clusters, or intronically as part of protein-coding transcripts2. Hairpins 
within the primary miRNA gene transcript are typically, but not always, 
recognized and cut by the endonuclease Drosha in the cell nucleus to pro-
duce miRNA precursors. These are then exported to the cytosol, where 
the hairpin structure is cut by the endonuclease Dicer at relatively fixed 
positions17–19. The hairpin processing by Dicer releases three products 
of largely invariant lengths (Fig. 1). One of these is the loop of the hair-
pin, which is degraded as a by-product. The two other products form a 
duplex, which is subsequently unwound by helicase activity. One of the 
strands in the duplex, the so-called star strand, is typically degraded, 
whereas the mature miRNA strand is taken up into the microribonucleo-
protein complex (miRNP)19. The mature miRNA sequence functions by 
guiding miRNP to target mRNAs by partial sequence complementarity. 
The approximately six nucleotides starting at position two from the 5′ 
end of the mature sequence are particularly important for target recogni-
tion20. miRNP regulates the mRNA transcript by inhibiting translation 
or decreasing its stability19.

An overview of the miRDeep algorithm is shown in Figure 2. Briefly, 
after the sequencing reads are aligned to the genome, the algorithm 
excises genomic DNA bracketing these alignments and computes their 
secondary RNA structure. Plausible miRNA precursor sequences are 
then identified and, in the core part of the miRDeep algorithm, scored 
for their likelihood to be real miRNA precursors. The output is therefore 
a scored list of known and novel miRNA precursors and mature miRNAs 
in the deep-sequencing sample, as well as estimates for the number of 
false positives.

In more detail, miRDeep initially investigates the secondary structure 
of each potential precursor as well as the positions of the reads that 
align to it. Next, a filtering step discards potential precursors that are 
grossly inconsistent with miRNA biogenesis. For the remaining (typi-
cally thousands of) potential precursors, miRDeep then probabilisti-
cally integrates deep-sequencing information based on a simple model 
for miRNA precursor processing by Dicer (Fig. 1a,b). If a sequence is 
an actual miRNA precursor that is expressed in the deep-sequencing 
sample, then one expects that one or more deep-sequencing reads cor-
respond to one or more of the three products—the mature miRNA 
sequence, the star sequence and the loop (Fig. 1a)—released when the 
precursor is cut by Dicer8. Further, it is expected that only very few, if any, 
reads do not correspond to these three products. Reads originating from 
miRNA Dicer products have relatively invariant lengths and relative 
positions, and therefore high information contents. If an miRNA precur-
sor candidate is part of an actual transcript, but not a Dicer substrate, 
then deep-sequencing reads will not fit into this model of processing. 
Often, the reads will originate from staggered degradation products of 
stochastic lengths and positions (Fig. 1b).

The miRDeep core algorithm scores each potential miRNA precur-
sor for the combined compatibility of energetic stability, positions 
and frequencies of reads with Dicer processing. A number of features 
contribute to the score. In general, the greater the number of deep-
sequencing reads corresponding to the mature or star products, the more 
likely the sequence is to be an miRNA precursor. The presence of one or 
more reads corresponding to the star sequence, taking into account the 
short 3′ duplex overhangs characteristic of Drosha/Dicer processing, adds 
to the score separately. As miRNA precursors are more stable than nonpre-
cursor hairpins21, both the relative and absolute stabilities of the structure 
also contribute to the score. Finally, the 5′ ends of mature miRNAs are 
often conserved across vast phylogenetic distances22,23. If the 5′ end of the 
potential mature sequence is identical to that of a known mature sequence, 
the score can optionally be increased. The probabilities of all features con-
tributing to the score are estimated by parameter fitting to known and 
background miRNA precursors. These parameter fits were stable when 
separately analyzing data sets from animals spanning large phylogenetic 
distances, strongly suggesting that miRDeep does not overfit. In sum, 
the algorithm assigns each sequence a log-odds score, which indicates 
the probability that the sequence is a true miRNA precursor instead of a 
background hairpin. In what follows, we refer to the number and relative 
position of reads in a potential miRNA precursor as the ‘signature’.

Statistical evaluation of miRDeep results
As many genomes contain large numbers of sequences that could fold 
into hairpin structures if transcribed (for instance, the human genome 
contains at least 11 million hairpins6) and most deep-sequencing reads 
originate from loci that are not miRNA genes (unpublished results), 
any algorithm that predicts miRNAs by intersecting deep sequencing 
data with secondary structure information risks producing vast num-
bers of false positives. We thus employed several stringent controls to 
estimate the sensitivity and the number of false positives per genome-
wide analysis.
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Figure 1  Analyzing the compatibility of sequenced RNAs with miRNA 
biogenesis. (a) Each of the RNA products generated after a stable miRNA 
precursor is cleaved by Dicer—the mature miRNA sequence, the star 
sequence and the loop2—has a certain probability of being sequenced. When 
miRDeep maps the sequenced RNAs (‘reads’) to the genome and to the 
corresponding predicted miRNA precursor hairpin structure, read sequences 
map to the positions reminiscent of the three Dicer products. However, the 
mature sequences are generally more abundant in the cell and are therefore 
also sequenced more frequently than the loop and star sequence RNAs. 
Thus, the statistics of the read positions and frequencies of the reads within 
the stable hairpin (the ‘signature’) are highly characteristic for miRNAs 
and are scored by miRDeep. The power of miRNA discovery by miRDeep is 
proportional to the depth of sequencing. (b) Large numbers of hairpins that 
are not processed by Dicer are also transcribed from metazoan genomes. 
These hairpins can also produce short RNAs, either through non-Dicer 
processing or through degradation. However, when the reads that originate 
from such sources are mapped back to the secondary structure, they will 
likely map in a manner that is inconsistent with Dicer processing.

ANALYS IS
©

20
08

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy



NATURE BIOTECHNOLOGY  VOLUME 26   NUMBER 4   APRIL 2008 409

We estimated the sensitivity as the fraction of known mature miRNA 
sequences (from miRBase version 10.0 (ref. 24)) represented by at least 
one read in the raw deep-sequencing data sets recovered in the final 
predictions. Simple sequence matching is used to find known miRNAs 
in the data sets. As sequencing reads representing miRNA sequences 
often have untemplated nucleotides in the 3′ end8,25, mismatches in the 
last three nucleotides are tolerated.

miRDeep scores each potential precursor by analyzing its read signa-
ture and its structure. We estimated the false-positive rate by running 
miRDeep on our input set of structures and signatures as usual, except 
that we randomly permuted the signature and structure pairings in the 
input data set. For example, if a read in a potential miRNA precursor A 
resides at relative position five (from the 5′ end), then it will be assigned 
to another potential miRNA precursor B, also at position five. All reads 
in A will be mapped to B in this manner. This control precisely tests our 
model hypothesis that for true miRNAs, the structure (the hairpin) is 
recognized by Dicer and therefore causes the signature. By permuting 
the structure and signature pairings, we thus simulate the null hypoth-
esis that the two are independent. Analysis of multiple independent 
permutation runs furthermore yields the s.d. of the estimated mean 
number of false positives.

Our test is conservative in that it tends to overestimate the number of 
false positives. Many of the actual miRNA precursors have a large number 
of reads that map consistently with our model of miRNA processing by 
Dicer. When the signatures of these precursors are combined with unstable 
background hairpins, the large score contribution of the signature causes 
the overall score to exceed the cut-off. In other words, a significant fraction 
of the estimated false positives are caused by actual miRNA signatures 
through a ‘hitchhiking effect’. Therefore, our false-positive estimates are 
likely an upper limit to the true number of false positives.

miRDeep handles heterogeneous input data robustly
Deep-sequencing data sets are very heterogeneous. Different genomes 
have different transcription profiles and long transcripts may be 
sequenced at the ends only, or represented by sequences of their degra-
dation products. Some genomes transcribe short functional noncoding 
transcripts, such as endogenous small interfering RNAs or repeat-
associated interfering RNAs12,26. Owing to their similar lengths, these 
can be particularly difficult to distinguish from miRNAs. Moreover, bias 
can be introduced during sample preparation where small RNAs are iso-
lated and ligated with specific adapters. Finally, sequencing technologies 
vary in the frequency and types of sequencing errors, in the maximum 
length of the sequence reads and in the number of reads produced.

We have implemented miRDeep in a flexible, probabilistic manner 
such that miRNA precursors with single noncharacteristic features can 
be recovered if they display other characteristics. Besides testing the abil-
ity of miRDeep to detect known and novel miRNAs, we also wanted to 
assess how robustly miRDeep handles heterogeneous data. We therefore 
obtained C. elegans deep-sequencing data from the GEO database, and 
produced two more data sets ourselves by deep sequencing a dog lym-
phocyte sample and a human cell line. Together, these data sets represent 
Protostomes and Deuterostomes with very different genome sizes and 
transcriptional profiles. Further, the data sets were produced by dif-
ferent laboratories, using 454 sequencing or Solexa sequencing. The 
core miRDeep algorithm was run on the three data sets with identical 
parameter settings, except for the score cut-off parameter.

miRDeep detects novel miRNAs in previously mined data
The relatively small (~100 Mb) genome of C. elegans—the organism 
in which miRNAs were first discovered27,28—has been intensively 
mined for miRNA genes using both computational and experimental 

methods29,30. Specific detection of miRNAs in C. elegans is difficult, as 
the transcriptome has a large fraction of small RNAs, such as endog-
enous small interfering RNAs and 21U-RNAs8 that can potentially cause 
many false positives. Our first data set comprised pooled reads from 
several 454 sequencing runs on C. elegans mixed-population small RNA 
samples8,12, obtained from the GEO database.

The deep-sequencing reads were aligned to the C. elegans genome. 
Reads that aligned to more than five genomic positions, or to 
University of California Santa Cruz (UCSC) annotations of rRNA, 
small cytoplasmic RNA (scRNA), small nuclear RNA (snRNA), small 
nucleolar RNA (snoRNA), tRNA or protein coding regions were dis-
carded. Reads corresponding to annotated 21U-RNAs8 were also dis-
carded. The remaining aligned reads were then used as guidelines for 
excising potential miRNA precursor sequences from the genome. Each 
of these potential precursor sequences were input to the miRDeep 
algorithm as described above. Scoring of sequences that passed the 
initial filtering (Fig. 3) revealed that 116 sequences passed the cut-off 
of 1 (all blue, Fig. 3a). Of these, 103 were known miRNA precursors 
(dark blue), corresponding to 102 unique known mature sequences, 
whereas 13 represented new candidate miRNA precursors, previously 
unannotated in this species (light blue). Of the 135 known C. elegans 
mature miRNA sequences at miRBase, 115 were present in the data set 
(Fig. 4). Of these, 102 (89%) were successfully recovered by miRDeep 
(Fig. 4a). The total estimated number of false positives was 8 ± 3 
(s.d.), corresponding to a signal-to-noise ratio of 15:1 (Fig. 4b). The 
estimated number of false positives for the new predictions was 6.5 
± 2 (s.d.), corresponding to a signal-to-noise ratio of 2:1 (Fig. 4c). 

Discard reads that map
to many genomic loci

Optional: discard reads that
map to rRNAs, tRNAs, etc.

 Use sequence reads 
  to excise potential
  miRNA precursors
   from the genome

 Discard unlikely
miRNA precursors

miRDeep core algorithm:
 probabilistic scoring of
 structure and signature

 Deep sequencing reads
 mapped to the genome

Optional:
genome annotation

     Known and new
mature and precursor
           miRNAs

          Optional:
estimate the number
   of false positives

Figure 2  Flowchart diagram representing the miRDeep software package.
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Only two more predictions resulted from doing predictions with-
out first discarding reads aligning to known annotations (including 
21U-RNAs). This shows that the annotation is not crucial for the 
prediction accuracy.

The mature and precursor sequences of the 13 novel candidates can be 
found in the Supplementary Sequences online. Eight of the novel mi- 
RNAs had 3′ overhangs characteristic of Dicer processing on both hairpin 
arms (Supplementary Fig. 1 online). Further, some of the novel miRNA 
genes had conservation patterns typical for miRNAs (Supplementary 
Fig. 2a,b online). Northern blotting confirmed four of the five candi-
dates tested (Fig. 5).

These results show, first, that miRDeep can successfully recover known 
miRNAs with high (89%) sensitivity, second, that miRDeep can success-
fully discriminate between miRNAs and other types of small RNAs, and 
finally, that although the data sets used have already been specifically 
mined for small RNA species8,12, miRDeep still predicts ten likely novel 
miRNA genes, while recovering 13 out of 18 precursor candidates pre-
dicted previously8.

A single miRDeep run recovers 28% of known human miRNAs
To produce the second data set, we used the Solexa technology to 
sequence the small RNA fraction of a human HeLa cell sample. The 
human genome (~3 Gb) is larger than that of C. elegans and has also 
already been mined extensively for miRNA sequences by conventional 
cloning of small transcripts, as well as by computational searches and 
deep sequencing (see, for instance, refs. 5,9,31).

miRNA predictions were made as for the C. elegans data set, and 
reads aligning to annotated rRNA, scRNA, snRNA, snoRNA and tRNA 

were discarded. In total, 173 sequences passed the cut-off of 1 (all blue, 
Fig. 3b). Of these, 163 were known precursors (dark blue; corresponding 
to 154 unique known mature miRNA sequences), whereas 10 repre-
sented new candidate miRNA precursors (light blue). Sequences of novel 
candidates are provided in the Supplementary Sequences. Further, some 
of the novel miRNA genes had conservation patterns typical for miRNAs 
(Supplementary Fig. 2c,d). Of the 555 known human mature miRNA 
sequences, 213 were present in the data set. Of these, 154 (72%) were 
successfully recovered by miRDeep (Fig. 4d). The total estimated num-
ber of false positives was 6 ± 2 (s.d.), corresponding to a signal-to-noise 
ratio of 29:1 (Fig. 4e). The estimated number of false-positive rates for 
the new predictions were 5 ± 2 (s.d.), corresponding to a signal-to-noise 
ratio of 2:1 (Fig. 4f).

Thus, despite years of research effort to clone small RNAs in dozens 
of human tissues, miRDeep recovers 156 (28%) of all known human 
mature miRNA sequences when analyzing deep-sequencing reads from a 
single HeLa sample. Perhaps surprisingly, we also found that 213 (~40%) 
of all known human mature miRNAs can be detected in in our HeLa 
sample, although roughly half of these are represented by <10 reads.

To summarize, after ~106 nonredundant loci were input to miRDeep, 
the algorithm recovered the majority of the known miRNAs present 
in the sample, reported ten novel miRNAs and produced only six 
false positives.

miRDeep discovers >200 dog miRNAs
The third data set was produced by Solexa sequencing the small RNA 
fraction of a domestic dog lymphocyte sample. Domestic dogs are 
emerging as an important model system for human disease32, and are 
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Figure 3  Discovery of known and novel miRNAs by miRDeep. (a–c) Histograms of miRDeep scores are shown for C. elegans (a), human (b) and dog (c) data. 
The inserts are close-ups. Known miRNA precursors are colored dark blue. False negatives (known miRNA precursors that do not exceed the cut-off of 1 for 
C. elegans and human, or 3 for dog) are plotted in red. Data above the score cut-off are likely novel miRNAs and colored light blue. All other data points are 
plotted in orange. (d–f) The statistical controls for C. elegans (d), human (e) and dog (f) are shown. Scores exceeding the cut-off are colored in blue (false 
positives), everything else in orange. These controls show that miRDeep correctly classifies the vast majority of potential miRNA precursors into true miRNAs 
and likely non-miRNAs, according to our simple model of miRNA biogenesis. The appearance of some false positives with very high scores results from the 
conservative nature of the statistical controls (‘hitchhiking’ effect).
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appealing for miRNA profiling as only six dog miRNA genes are anno-
tated in miRBase24. miRNA predictions were made as before, except no 
reads were discarded based on the annotation. In total, 206 passed the 
cut-off of 3 (Fig. 3c). Of these, 203 represented previously unknown dog 
candidate miRNA genes (light blue), whereas three represented previously 
known dog miRNAs (dark blue). As only four known miRNAs are present 
in the data set, the sensivity is 75% (Fig. 4g). The estimated number of 
false positives both for the total and for the new predictions was 6 ± 2 
(s.d.) corresponding to a signal-to-noise ratio of 30:1 (Fig. 4h,i). Of the 
novel miRNAs, 90% had a conserved nucleus sequence (Supplementary 
Table 1 online and Supplementary Sequences) and 58% had the 3′ 
overhangs characteristic of Dicer processing. When the novel precur-
sors were compared with known rRNA, scRNA, snRNA, snoRNA, tRNA 
consensus sequences, only two had any similarity.

Thus, miRDeep can reveal numerous miRNA genes when analyzing 
data from genomes previously unmined for small RNAs.

Availability of the miRDeep software package
The miRDeep package can be downloaded at http://www.mdc-berlin.
de/rajewsky/miRDeep and consists of several specialized Perl scripts 
that in combination perform the computations described in this study. 
Beside Perl (available at http://www.perl.com/), the Vienna package33 
(available at http://www.tbi.univie.ac.at/RNA) and the Randfold appli-
cation21 (http://bioinformatics.psb.ugent.be/
software/details/Randfold) are required depen-
dencies. Also needed is a nucleotide sequence 
alignment tool such as the NCBI BLAST pack-
age34 (http://www.ncbi.nlm.nih.gov/Ftp/). All 
of these packages are portable and freely avail-
able. As the miRDeep core parameters work 
independent of species and data sets, no com-
plicated estimation processes are needed. The 
cut-off can be varied with a single command 
line argument for custom trade-offs between 
sensitivity and specificity. The user can choose 
which potential precursor sequences to input 
to the core algorithm. These can be either 
sequences excised from the genome by miRD-
eep using the aligned reads as guidelines, or 
custom sequences. After aligning reads to the 
genome, only a few hours on a standard Linux 
box are needed for genome-wide prediction 
using miRDeep.

DISCUSSION
By using a simple model for miRNA precur-
sor processing by Dicer, miRDeep is capable 
of both recovering the majority of known  
miRNAs present in heterogeneous deep-
sequencing samples and reporting novel 
miRNAs with high confidence. Estimating 
the reliability of results by predicting false-
positive rates before follow-up experiments 
is important for most practical applications. 
Such statistical tests always depend on certain 
assumptions, but our approach has the virtue 
of relying on the biological model of miRNA 
precursor processing by Dicer, which is pre-
cisely at the heart of the miRDeep algorithm. 
Another general limitation of algorithms 
for miRNA discovery is their reliance on 

parameters learned from known miRNAs, which introduces bias towards 
accurate recovery of known miRNAs, but less reliability or sensitivity in 
discovering novel miRNAs (‘overtraining’). However, whereas miRDeep 
parameters were derived from only a subset of miRNAs, they produce 
the overall same quality of results when run on very different data sets. 
Thus, we believe that miRDeep is not overtrained and that it is a widely 
applicable and flexible tool for researchers wanting to identify known and 
novel miRNAs in metazoan deep-sequencing samples.

However, to test an extreme case, we ran miRDeep on deep-sequencing 
data from a planarian sample (unpublished data). Planaria are metazoans, 
but have roughly equal phylogenetic distance to human and C. elegans and 
reside altogether in a comparatively unexplored branch of the meta-
zoan phylogenetic tree. Sixty-one mature miRNAs had been cloned and 
sequenced in planaria previously35. miRDeep rediscovered 86% of these, 
while reporting 39 novel miRNAs. Importantly, no genomic annota-
tion information was used. We have validated 16 of 19 tested miRNAs 
by northern blot analysis (unpublished data). At least 7 out of these 16 
miRNAs have not been reported in any other animal, adding confidence 
to miRDeep results, even in situations where only a minimum of con-
servation or annotation information is available.

Ruby et al.8 also predicted miRNAs from deep-sequencing data 
in C. elegans, but did not estimate the sensitivity and the false-posi-
tive rate of the prediction approach. Although the approach is neither 
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sequences recovered in the final set of miRDeep predictions is shown in orange. By this measure, the 
sensitivity of miRDeep ranges from 72–89%. The false-positive estimations are shown in each data 
set separately for the total number of miRNA precursor predictions (b,e,h) and for the novel miRNA 
predictions only (c,f,i). miRNA precursors reported by miRDeep are shown in purple. The estimated 
number of false positives is shown in green, with error bars indicating the s.d. The signal-to-noise 
ratios (ratio of the heights of purple and green bars) for total miRNAs range from 15:1 to 30:1. For 
novel miRNAs, the dog data set has the best quality (signal-to-noise ratio 30:1), as this genome has 
previously not been mined heavily for miRNAs.
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available as a software package nor described in enough detail to allow 
us to test their approach on other data sets, running miRDeep on the 
exact same deep-sequencing data used by Ruby et al. recovered 13 out of 
the 18 novel miRNA precursors predicted by Ruby et al., while reporting 
12 additional novel miRNAs. The inclusion of the C. elegans deep-
sequencing data from Pak et al.12 yielded another novel miRDeep-
predicted miRNA.

Berezikov et al.9 described an algorithm that predicts hundreds 
of novel human miRNA candidates from deep-sequencing data. 
However, it is difficult to determine how many of these are genuine, 
as they are typically expressed at extremely low levels. The majority 
of these candidates are represented only by a single read, making it 
difficult to decide whether they are genuine miRNAs or degradation 
products from non-miRNA transcripts. Whereas Berezikov et al. esti-
mate that their algorithm predicts one false-positive miRNA for an 
input of ~100 nonredundant read sequences, miRDeep has several 
orders-of-magnitude fewer false positives (one false-positive miRNA 
for every ~25,000 nonredundant read sequences). However, the two 
algorithms were designed with very different objectives. Whereas the 
algorithm of Berezikov et al. takes the deep-sequencing technology 
to the limit in terms of sensitivity and seeks to report an exhaustive 

list of miRNA candidates, miRDeep is designed to recover a large set 
of real miRNAs in a deep-sequencing sample, while minimizing the 
number of false positives. It will be interesting to run miRDeep on 
the data used by Berezikov et al. once they are publicly available.

In this study, the potential miRNA precursors that were input to 
miRDeep were excised from the genomes using the deep-sequencing 
reads as guidelines, and further filtered by very basic characteristics. We 
alternatively tried to use candidate miRNA precursor sequences pre-
dicted by several advanced miRNA detection algorithms that predict 
miRNA genes by using support vector machine or other types of learn-
ing algorithms based on much more detailed features of miRNA pre-
cursor structures (data not shown). However, we found that in all cases 
this severely compromised the sensitivity of miRDeep without lowering 
the false-positive rate. Of course, a number of existing miRNA gene-
prediction programs have proven to be useful6. Therefore, our results 
suggest that many of these algorithms could potentially be significantly 
improved by incorporating deep-sequencing data.

METHODS
Preparation of total RNA. Peripheral blood samples were drawn from a male 
dog (race “Griechischer Laufhund”, eleven years old) using a heparin-coated 
syringe. Following a selective hypotonic lysis of erythrocytes36, residual white 
blood cells were collected by centrifugation (500g, 5 min, 20 °C), suspended in 
PBS and immediately used for RNA isolation. Dog total RNA was prepared using 
the mirVana Isolation Kit (Ambion) according to the manufacturer’s protocol. 
The quality and quantity of resulting total RNA samples was checked using the 
NanoDrop Spectrometer (ND-1000 Spectrophotometer, Peqlab) as well as the 
Agilent 2100 Bioanalyzer (RNA Nano Chip, Agilent).

Total RNA was isolated from mixed-stage C.elegans population (N2 strain) 
using TRIZOL reagent (Invitrogen) following the manufacturer’s protocol37. 
Total RNA from HeLa cells was also isolated using the TRIZOL protocol.

Northern blots. Validation of miRDeep candidates was done by northern blot 
analysis as described earlier38. Briefly, 90 µg total RNA per lane and a RNA lad-
der (Decade marker, Ambion) were resolved side by side on a 15% denaturing 
polyacrylamide gel and transferred onto Hybond-N+ membrane (Amersham, 
GE Life Sciences). Hybridization and wash steps were performed at 43 °C. The 
5′ 32P-radiolabeled oligodeoxynucleotide probes were:

5′-AATAGAGAAATTCCAATGGTTG-3′ for miRDeep-cel-2,
5′-CATGATAGAGAAGACATTGGCTA-3′ for miRDeep-cel-3,
5′-TACAACCATCTAGAAGATCGCTT-3′ for miRDeep-cel-4,
5′-TACAACCATCTTGAATTTCGCTT-3′ for miRDeep-cel-5 and
5′-AGAGTTTTTCTGAGGGCAGCTC-3′ for miRDeep-cel-8.

Solexa sequencing of human and dog small RNAs. Small RNAs from the 
human and dog total RNA samples were prepared for Solexa sequencing as 
follows: ~10 µg total RNA were size-fractionated by Novex 15% TBE-Urea gel 
(Invitrogen) and RNA fragments of length between 20 and 30 bases were iso-
lated. The purified small RNAs were then ligated with 5′ adapter (Illumina). To 
remove unligated adapters, the ligation products (40–60 bases in length) were 
gel purified on Novex 15% TBE-Urea gel. Subsequently, the RNA fragments 
with the adapter at the 5′ end were ligated with 3′ adapters (Illumina). After gel 
purification on Novex 10% TBE-Urea gel (Invitrogen), RNA fragments with 
the adapters at both ends (70–90 bases in length) were reverse transcribed and 
the resulting cDNA was subjected to 15 PCR cycles. The amplification products 
were loaded on Novex 6% TBE gel (Invitrogen) and the gel band containing 
90- to 100-bp fragments was excised. The purified DNA fragments were used 
directly for cluster generation and 27 (human) or 36 (dog) cycles of sequencing 
analysis using the Illumina Cluster Station and 1G Genome Analyzer following 
manufacturer’s protocols. Sequencing reads were extracted from the image files 
generated by Illumina 1G Genome Analyzer using the open source Firecrest and 
Bustard applications (Illumina).

Obtaining C. elegans small RNA 454 sequencing reads. Two published C. elegans 
454 deep-sequencing data sets were obtained from the GEO database at NCBI. 
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Figure 5  Validating miRDeep candidates by northern blot analysis. Northern 
blot analysis of five of the novel C. elegans miRDeep miRNAs revealed bands 
corresponding to the mature miRNA product in four out of five candidates 
(lanes 2–5). The nucleotide length of the mature products as indicated by 
the RNA marker lanes are consistent with the predicted mature miRNA 
length in all four cases. The predicted secondary structure of each precursor 
is provided below. Black vertical bars represent the consensus positions of 
sequencing reads that mapped to the predicted precursors and numbers 
indicate the total number of these reads. The gray circles indicate small 3′ 
overhangs which are known to be typical for Dicer processing.

ANALYS IS
©

20
08

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy



NATURE BIOTECHNOLOGY  VOLUME 26   NUMBER 4   APRIL 2008 413

The first had been produced by sequencing a sample of mixed-stage C. elegans 
fed bacteria that produced double-stranded RNA (accession no. GSE6282). The 
other had been produced by combining five sequencing reactions of five different 
mixed-stage samples (accession no. GSE5990).

Aligning the deep-sequencing reads. The deep-sequencing reads of the two 
C. elegans 454 deep-sequencing sets were combined and aligned to the genome 
(C. elegans version ce2, obtained from the UCSC genome database http://genome.
ucsc.edu/) using NCBI megablast (BLAST version 2.2.14) with the following 
options: -W 12 -p 100. Only perfect alignments were retained (full length, 100% 
identity).

The HeLa cell Solexa data set was aligned to the human genome (Homo 
sapiens version hg18, from UCSC) using megablast, as above. As this data set 
included adapter sequences, these were subsequently removed using the follow-
ing approach: alignments were kept that had perfect alignment from nucleotides 
1–18, and these alignments were extended until the first mismatch. Any unaligned 
ends of these reads were assumed to be adapters and were discarded. For each 
read, alignments of suboptimal length were discarded (if the best alignment was 
22 nt, all shorter alignments were discarded).

Adapters were removed from the dog lymphocyte Solexa data set by use of a 
custom suffix-based mapping tool. First, the adapter sequences were identified 
in the deep-sequencing reads. We required the presence of minimum 10 nucleo-
tides (nt) of the 5′ adapter sequence with a maximum of three edits (mismatches 
and/or insertions/deletions). Reads that contained an identified adapter sequence 
had the adapter removed and were retained, the rest were discarded. The retained 
reads were mapped to the dog genome (Canis familiaris version canFam2, from 
UCSC) using the custom mapping tool, allowing for up to two edits. For each 
read, mappings of suboptimal edit distance were discarded (if the best mapping 
was edit distance 1, all edit distance 2 mappings were discarded).

Excising potential miRNA precursors from the genome using deep-sequencing 
reads as guidelines. Before excising the potential precursors from the genome 
using the aligned reads as guidelines, the miRDeep package discards a number 
of reads unlikely to represent mature miRNA sequences. These reads are only 
disregarded for purposes of the potential precursor excision, since the total set 
of reads is used to score the potential precursors (see the next section). More pre-
cisely, we discarded reads that aligned to more than five positions in the genome. 
The vast amount of known mature miRNA reads align to five positions or less 
(unpublished results), and by discarding reads that align ubiquitously, vast num-
bers of alignments can be disregarded. Further, C. elegans and human reads that 
overlapped with positions (on either strand) annotated by the UCSC database39 
as rRNA, scRNA, snRNA, snoRNA or tRNA were discarded, as were reads that 
had perfect alignments to these types of noncoding RNA in the Rfam database40. 
Since it is known that C. elegans encodes endogenous small interfering RNAs and 
21U-RNAs, all reads overlapping with annotated positions of protein coding 
sequence or 21U-RNAs8 were discarded.

The remaining aligned reads were used as guidelines to excise potential pre-
cursor sequences from the genome. In the cases where reads aligned to the same 
strand within 30 nucleotides of each other, they were assumed to represent Dicer 
products of the same putative miRNA precursor, and were clustered. In these 
cases, a single sequence, consisting of the clustered region and 25-nucleotide 
flanks were excised. If such a potential precursor was longer than 140 nucleotides, 
it was discarded. In the cases where reads aligned more than 30 nucleotides from 
any other aligned reads on the same strand, two potential precursor sequences 
of length 110 nt were excised, corresponding to the reads being processed from 
the right or left arm of a potential precursor sequence.

Probabilistic scoring of the potential miRNA precursors. At this point, potential 
precursors that did not fold into a hairpin, or that had reads aligning to it in a way 
that was inconsistent with Dicer processing, were discarded. This was done by a 
combinatorial investigation of structure and signature. The details are as follows. 
First, the position of the potential mature miRNA sequence was defined as the 
position of the most abundant read sequence aligning to the potential precursor 
sequence. Second, the potential star sequence was defined as the sequence base 
pairing to the potential mature sequence, correcting for the 2-nt 3′ overhangs. 
Third, the loop was defined as the sequence between the potential mature and star 
sequence. Fourth, the potential mature-loop-star structure should form an unbi-
furcated hairpin, with a minimum of 14 base pairings between the mature and the 

star sequence. Fifth, for each read it was tested whether it aligned to the potential 
precursor in consistence with the signature expected from Dicer processing. More 
precisely, a read is in consistence if it aligns with the potential mature, loop or 
star, allowing the read to stretch two nucleotides beyond the expected position in 
the 5′ end or up to five nucleotides in the 3′ end. In the cases where >10% of the 
reads aligning to a potential precursor were inconsistent with this signature, the 
potential precursor was discarded. These liberal consistency rules were used to add 
robustness to the detection of fuzzy endonuclease processing.

Each potential precursor sequence that passed the initial filtering was then scored 
probabilistically. Our score is the log-odds probability of a sequence being a genuine 
miRNA precursor versus the probability that it is a background hairpin, given the 
evidence from the data:

1. score = log (P(pre | data) / P(bgr | data)
The probability of the sequence being a precursor is given by Bayes’ theorem:

2. P(pre | data) = P(data | pre) P(pre) / P(data)
3.  P(pre | data) = P(abs | pre) P(rel | pre) P(sig | pre) P(star | pre) P(nuc | pre) 

P(pre) / P(data)
The same holds for the probability of the sequence being a background hairpin:

4. P(bgr | data) = P(data | bgr) P(bgr) / P(data)
5.  P(bgr | data) = P(abs | bgr) P(rel | bgr) P(sig | bgr) P(star | bgr) P(nuc | bgr) 

P(bgr) / P(data)

P(pre) is the prior probability that a potential precursor is actually a miRNA 
precursor.

P(bgr) is the prior probability that a potential precursor is non-miRNA back-
ground hairpin and equal to 1-P(pre).

abs is the estimated minimum free energy of the potential precursor.
P(abs|pre) is the probability that a real miRNA precursor would have the 

value abs.
P(abs|bgr) is the probability that a non-miRNA background hairpin would 

have the value abs.
rel is equal to 1 if the potential precursor sequence is energetically stable, 

0 otherwise.
P(rel|pre) is the probability that a real miRNA precursor has the value rel.
P(rel|bgr) is the probability that a background precursor has the value rel.
sig is the number of reads in the deep-sequencing sample that align to the poten-

tial precursor sequence in consistence with Dicer processing (see above).
P(sig|pre) is the probability that a real miRNA precursor has the value sig in the 

deep-sequencing sample.
P(sig|bgr) is the probability that a background hairpin has the value sig in the 

deep-sequencing sample.
star is equal to 0 if the potential precursor sequence has no reads that represent 

a putative star sequence, and 1 otherwise.
P(star|pre) is the probability that a real miRNA precursor has the value star in 

the deep-sequencing sample.
P(star|bgr) is the probability that a background hairpin has the value of star in 

the deep-sequencing sample.
nuc is an (optional) binary variable. It is 0 if the nt 2–8 from the 5′ end of 

the putative mature miRNA are not conserved in any other metazoan, and 
1 otherwise.

P(nuc|pre) is the probability that a real miRNA precursor has the value 
of nuc.

P(nuc|bgr) is the probability that a background hairpin has the value of nuc.
In the above, we are assuming independence between abs, rel, sig, star 

and nuc.

Parameter estimation. All parameters were first estimated using C. elegans 
data only:

pre and brg are by default set to P = 0.5, but can be changed based on the 
expected miRNA contents in the deep-sequencing samples.

sig. To generate a set of background hairpins, we took the sequences excised 
from the C. elegans genome and discarded the ones that corresponded to known 
miRNA precursors or that did not have a hairpin structure. The number of 
remaining hairpins was ~2,000. For each background hairpin, we found the 
number of reads that aligned perfectly to it. The distribution of these numbers 
was approximately geometric. The parameter of the geometric distribution 
(used to model sig) was estimated using the mean of the numbers. The same 
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procedure was used for known C. elegans miRNAs to estimate a geometric dis-
tribution for real miRNA precursors.

abs. For each background hairpin, the absolute value of the minimum free energy 
was predicted using RNAfold. The distribution of these values was found to approx-
imate the Gumbel distribution. The parameters for the Gumbel distribution 
(used to model abs) were as estimated in ref. 41. As the Gumbel distribution 
is a continuous distribution, probabilities were calculated within windows 
of 1 kcal/mol. The same procedure was used for known C. elegans miRNAs to 
estimate the Gumbel distribution for real miRNA precursors.

rel. A potential precursor was defined to be energetically stable if it had a Randfold 
P < 0.05 (mononucleotide shuffling, 999 permutations). Since it is computationally 
demanding to produce this large a number of permutations, the contribution of the 
relative stability to the overall score is only calculated if it can make the difference 
between the overall score exceeding the cut-off or not. This is the cause of the ‘valley’ 
in the score distributions between score 0 and 1 in Figure 3.

star is set to 1 if the majority of star reads have a 5′ end that is within one 
nucleotide of the position expected from Dicer processing (taking into account 
3′ overhangs).

For both true precursor hairpins and background hairpins, the probabilities 
for rel, star and nuc were set according to raw relative frequencies. If, for instance, 
1% of the background hairpins had a conserved nucleus, P(nuc|bgr) would be 
set to 0.01.

In some samples, we observed that many known small RNAs other than  
miRNAs are transcribed in large numbers from a single locus from one strand 
only. Therefore, we limited the contribution of sig to the total score to 0 unless 
the star sequence is represented by at least one read. In practice this means that 
the structure scoring of abs and rel becomes more important when the deep-
sequencing data are ambiguous.

The entire parameter estimation procedure was repeated in planaria, using the 
known precursors of the planarian Schmidtea mediterranea (also from miRBase) 
and unpublished planarian 454 data. Although C. elegans and planarians are 
separated by a large phylogenetic distance, the parameter estimates were similar, 
suggesting that the estimation process is largely species-independent. The pooled 
training sets of these two species have been used to estimate the final parameter 
set for the current study.

Controls. The number of known mature miRNA sequences present in the 
data sets was estimated by finding how many mature sequences aligned per-
fectly to the deep-sequencing reads, allowing for mismatches in the last three 
nucleotides of the mature sequences. This was done on the raw deep-sequencing 
data sets, just after adapters had been removed. The number of known mature 
miRNA sequences in the predictions was estimated by finding how many mature 
sequences aligned perfectly to the final set of predicted miRNA precursors. The 
sensitivity was estimated as the ‘number of mature miRNA sequences recovered’ 
divided by the ‘number of mature sequences present in the data set’. Both when 
making the controls and when making the actual predictions, special care was 
taken to ensure that no miRNAs were scored higher because the sequence of the 
miRNA was included in the conservation set (circular inference).

The false-positive rate was estimated using a permutation approach. For each 
potential precursor sequence, the protocol generates a secondary structure pre-
diction and a processing signature containing information on the positions and 
frequencies of aligned reads. The controls were made such that all structures and 
signatures were maintained, but the structure and signature pairings were per-
muted. In all other respects, the runs were performed as described above. For each 
estimation of the false-positive rate, 100 independent permutations were used.

Comparing novel dog miRNA precursors to Rfam sequences. The set of novel 
dog miRNA precursor candidates were aligned against the full set of noncoding 
sequences obtained at Rfam using NCBI blastn with the following options: -F F 
–e 1e-5. Only two of the candidates had any similarity to non-miRNA sequences 
(these were snoRNA sequences).

Contribution of scored features to overall accuracy. To assess the contribution 
of the scored features to the accuracy, we ran miRDeep on the human data, sys-
tematically omitting parts of the algorithm. In some cases it is not transparent 
if changes in sensitivity and false-positive rate actually improve or worsen the 
algorithm (for instance, when both sensitivity and false-positive rate go up). 

Therefore the score cut-off was varied in each run such that the sensitivity 
remained constant (at 72%). We then recorded the change in false positives. 
Each run was repeated ten times and the mean number of false positives noted. 
For example, we found that omitting the hairpin stability scoring with Randfold 
boosted the false-positive rate on average by a factor of 1.9. We found in all 
cases that the elimination of a score feature increased the number of false posi-
tives (minimum free energy 2.2, star sequence 3, conservation 3). Omitting all 
four score features increased the number of false positives by a factor of 17. 
Additionally allowing nonhairpins boosted the number of false positives by a 
factor of 42.

This shows that all features scored by miRDeep significantly contribute to 
the accuracy. Individual score features can in most cases be omitted, since an 
increase by a factor of two or three in the false-positive rate can often be toler-
ated. This means, for instance, that the computational speed of miRDeep can be 
substantially increased through omission of the Randfold scoring. It also means 
that conservation scoring can be omitted. However, when miRDeep is run on 
already mined data, or in genomes that have been heavily mined for small RNAs, 
we recommend that all parts are included to get the highest possible signal-to-
noise ratio for the novel predictions.

The miRDeep software package. The miRDeep software package consists of seven 
documented Perl scripts that should be run sequentially by the user. miRDeep can 
be run on Linux or Windows platforms or any other system that supports Perl.
1.  blastoutparse.pl is used to parse standard NCBI BLAST output format into a 

custom tabular separated format (‘blastparsed’).
2.  blastparselect.pl cleans the output from blastoutparse.pl.
3.  filter_alignments.pl filters the alignments of deep-sequencing reads to a 

genome. It filters when only a limited part of a read is aligned. It can also filter 
reads that are aligning multiple times (user-specified) to the genome. The basic 
input is a file in blastparsed format.

4.  overlap.pl can be used (user specified) to remove reads that align to the genome 
in positions that overlap with selected annotation tracks provided by the user 
(e.g., known rRNAs, tRNAs). The basic input is a file in blastparsed format and 
an annotation file in standard gff format.

5.  excise_candidate.pl cuts out potential precursor sequences from a genome 
using aligned reads as guidelines. The basic input is a file in blastparsed format 
and a genome FASTA file. The basic output is also FASTA format.

6.  mirdeep.pl is the core algorithm. Several files are given as input. The first is a 
file in blastparsed format giving information on reads aligning to the potential 
precursors. The second is an RNAfold output file giving information on the 
sequence, structure and absolute stability of the potential precursors. Several 
command line options are available. One option inputs a FASTA file con-
taining known mature miRNA sequences to allow for conservation scoring. 
Another option allows for a sensitive run optimized for Sanger sequences 
obtained through conventional small RNA cloning. Another option evalu-
ates Drosha stem recognition by scoring the number of base pairings formed 
by the sequences immediately flanking the potential precursor sequence. A 
further option uses the Randfold algorithm to score the relative stability of 
potential precursors that have a score close to the set cut-off. Basic output of 
the algorithm is the total information on the predicted miRNA precursors, 
including structure prediction, minimum free energy, signature and the scoring 
contributions of all evaluated features.

7.  permute_structure.pl permutes the id and sequence/structure combinations 
of an RNAfold output file. This is used to do the permutation controls.

Accession codes. NCBI Gene Expression Omnibus (GEO). Data sets have been 
deposited with accession codes GSE10825 and GSE10829.

Note: Supplementary information is available on the Nature Biotechnology website.
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