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a b s t r a c t

Real-time quantitative polymerase chain reaction (qPCR) is widely used in biomedical sciences

quantifying its results through the relative expression (RE) of a target gene versus a reference one.

Obtaining significance levels for RE assuming an underlying probability distribution of the data may be

difficult to assess. We have developed the web-based application BootstRatio, which tackles the

statistical significance of the RE and the probability that RE41 through resampling methods without

any assumption on the underlying probability distribution for the data analyzed. BootstRatio perform

these statistical analyses of gene expression ratios in two settings: (1) when data have been already

normalized against a control sample and (2) when the data control samples are provided. Since the

estimation of the probability that RE41 is an important feature for this type of analysis, as it is used to

assign statistical significance and it can be also computed under the Bayesian framework, a simulation

study has been carried out comparing the performance of BootstRatio versus a Bayesian approach in the

estimation of that probability. In addition, two analyses, one for each setting, carried out with data from

real experiments are presented showing the performance of BootstRatio. Our simulation study suggests

that Bootstratio approach performs better than the Bayesian one excepting in certain situations of very

small sample size (Nr12). The web application BootstRatio is accessible through http://regstattools.

net/br and developed for the purpose of these intensive computation statistical analyses.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Real-time quantitative polymerase chain reaction (qPCR) is
widely used in research and diagnostics as a method to reliably
quantify nucleic acid amount due to its robustness, easy procedures,
reproducibility and the lower sample amount needed in comparison
with other methods. When used in combination with retrotran-
scription (RT-qPCR) it allows determining gene expression. Quanti-
fication results are based on either the relative expression (RE) of a
target gene versus a reference one or an absolute quantification
based on internal or external calibration curves [1]. RE is widely
used by researchers as it avoids the complications of generating
calibrating material and it is measured as the ratio between the
mean target gene expression and that of the reference one. MIQE

guidelines for publication of RT-qPCR data suggest that data analysis
procedures and statistical methods to assign significance to the data
should be indicated when publishing [2]. In the literature, few
statistical methods have been developed for the statistical data
analysis of RT-qPCR [3–8]. Obtaining significance levels for the RE
through statistical modeling entail assuming an underlying prob-
ability distribution of the data that may be difficult to assess,
specially when data is based on small sample size (no20) on both
target and reference samples. In these situations, resampling meth-
ods may be used to assess percentiles, and therefore, statistically
significance of a statistical estimator such as the mean, median or
standard error of the data [9]. Successful biological applications of
these techniques such as computing confidence intervals [10],
clustering [11], robust estimation of statistics [12] and non-linear
regression [13] have been previously described. These methods can
be also useful to efficiently calculate very low P-values from a large
number of resampled measurements [14].

In this paper we apply bootstrap and permutation tests to
assess the statistical significance of the gene expression ratios of
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RT-qPCR without any assumption on the underlying probability
distribution of our data. The web application BootstRatio has been
developed to perform statistical analyses of gene expression
ratios either when data has been already normalized against a
control sample or when control samples are provided. A simula-
tion study has been carried out comparing the performance of the
method presented here versus a Bayesian one, this last requiring
certain prior distribution for the data to be assumed. In addition,
we also show the results of the analysis of real-data, one for each
of the possible data sets indicated above, showing the perfor-
mance of the method.

2. Statistical methods

The Bootstrap method: Analysis of gene expression ratios with
no control sample (samples already normalized against a control
sample).

Let G be the gene of interest for which we have a sample of m

observed expression ratio values SG¼{RG1,...,RGm} assuming RGiZ0
8i¼1,...,m. We can estimate the mean ratio as _mRG

XRG
¼

ð1=mÞ
Pm

i ¼ 1 RGi. Our interest is to assess whether mRG
41 and

therefore, to assess its statistical significance estimating
PðmRG

41Þ through Bootstrap [9]. The bootstrap is a general
technique for assessing uncertainty in estimation procedures
using computer simulation through resampling from the original
data [9]. Bootstrap is a solution [9] when there is doubt that the

usual distributional assumptions and asymptotic results are valid
and accurate [15,16].

BootstRatio resamples a dataset for specified number of times,

say L times. BootstRatio calculates XRG
in each resample of the

dataset, therefore it computes X
ðjÞ

RG
for the jth resample where-

j¼{1,...,L}. At the end of this iterative process, Bootstratio
estimates PðmRG

41Þthrough computing the number of times that

XRG
41 out of L times. Specifically, it computes

_
PðmRG

41Þ ¼
PL

j ¼ 1 IðX
ðjÞ

RG
41Þ=L that estimates PðmRG

41Þ, where IðX
ðjÞ

RG
41Þ ¼ 1

when XRG
41 and IðX

ðjÞ

RG
41Þ ¼ 0 otherwise.

The permutation test: Analysis of gene expression ratios when
control samples are provided in the data set.

Let G be the gene of interest for which we have (at least) two
conditions, a treatment one T, to be compared with a control one,
C, where measures of each condition have been extracted from
two groups of patients. A sample of m values has been obtained
from the control group, XC1,...,XCm, and another sample of size n

has been obtained from the treated one, XT1,...,XTn. Let E[XCi]¼m
C and E[XTj]¼mT be the theoretical mean expressions for control
and treated groups, respectively. Our interest is to estimate
RGT¼(mT/mC) through

_
RGT ¼ ðXT=XCÞ where RGT41 indicates if

the treated sample shows higher expression than the control
one. On the contrary, RGTo1 indicates that treated sample has
lower expression than the control one, whereas RGT¼1 indicates
no differences between the expressions of treated and control

Fig. 1. Snapshot of the main page of BootstRatio web application where the user must select the type of analysis: (I) Unique condition for each gene with no control sample

(II) several conditions for each gene using a control sample.
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samples. Our interest is to determine whether RGTa1 by means of
testing whether probabilities P(RGT41)oa or P(RGTo1)oa for a
certain significance level a, usually aA{0.1,0.05,0.01,0.001,0.0005}.
A permutation’s test approach [9,15,16] is used when two condi-
tions or more arise from the data.

The term permutation test refers to rearrangements of the
data [9]. Bootstratio generates a number of permutations of the
Treatment and Control labels, say L, and it randomly assigns these
labels to the observed values. The sampling distribution of the
test statistic

_
RGT is computed by forming these L permutations

and estimating P(RGT41)through computing the number of times
that

_
RGT 41 out of L. An extended description of these statistical

methods can be found in the supplementary material file on
journal’s website.

2.1. BootstRatio web application

The BootstRatio web application can be found at http://regstat-
tools.net/br. The method described above has been implemented in
a website allowing two types of analysis, which requires the user to
upload a different ASCII file in each case. In the first type of analysis
we have a unique condition for each gene and the user must provide
a dataset with expression ratios for each gene. The dataset contains
two columns, one column refers to the name of the gene and the
other is the gene expression ratio. In the second type of analysis we
have several conditions for each gene analysis including a control
one; the user must provide a dataset with three columns. The first
one refers to the name of the gene, the second refers to the type of
condition, which should include a control one as well as one or more
treated types, whereas the third column is the expression values.

A snapshot of the web application can be found in Fig. 1. The
user must select the type of analysis and also provide an e-mail
address (see Fig. 2) where the results of the statistical analysis
will be sent. The application also produces two files, web

accessible, that comprise the results. The first file includes a table
with statistics extracted from the analysis, whereas the second
file includes a report in PDF format where the user may find
boxplot graphs of the resampling distribution of _mRG

or
_
RGT ,

depending on the type of analysis and a summary table with
main statistics. Tutorials and example datasets can be down-
loaded from BootstRatio web-site. The web-application has been
programmed using R (www.r-project.org), PHP and HTML. R code
for the analysis can be obtained from the corresponding author.

2.2. Simulation study: BootstRatio versus Bayesian approach

A simulation study has been carried out in order to assess the
performance of the resampling method presented here. We have
compared this method with a Bayesian approach under two situa-
tions: (A) Performance with three different number of replicates and
(B) assuming the presence of random noise. The estimation of the
probability that an expression ratio is greater than 1 is a new feature
compared to other methodologies [1–8,10–14], and it only can be
compared to a Bayesian methodology [17] in a similar line.

The simulation procedure consists in generating a sample of
N¼60, N¼20 and N¼12 observations from simulated distributions
of RGT and assess the estimation of P(RGT41) using BootstRatio as
well as the Bayesian method. To compare the performance between
methods we have calculated the Relative Error in the P(RGT41) (REP)
using the Bootstratio method, REP(%)¼(9P(RGT41)�P(RBt41)9/
P(RGT41))x100, where P(RGT41) is the true probability of RGT greater
than one (known value) and P(RBt41) is the relative frequency that
RBt, the Bootstratio estimate of RGT, is greater than one. In the Bayesian
method, the REP(%) formula changes P(RBt41) for P(RBY41), where
P(RBY41) is the relative frequency that RBY, the Bayesian estimate of
RGT, is greater than one. A detailed description of the simulation
method can be found in the supplementary material file on journal’s
website.

Fig. 2. Snapshots of the BootstRatio web application: (a) No control sample analysis (unique condition for each gene) versus (b) with control sample analysis (several

conditions for each gene will be compared to a control sample).
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2.3. Real data example: unique condition for each gene with No

control sample (samples already normalized against the control)

The dataset consist on the relative expression ratios of 12 S/MT-
RNR1, MT-CO2/COX2, and MT-ATP6 mitochondrial genes in prostate
cancer [17]. Ratios corresponded to the relative expression of tumor
samples versus normal samples for each of the patients (see
Example dataset 1 on http://regstattools.net/br). A total of 19
relative expression ratios for each gene were used.

2.4. Real data example: several conditions for each gene

with a control sample (when control samples are provided

in the data set)

Total RNA was isolated from mice kidneys with the trizol
method (Invitrogen). Purity and concentration of RNA were
assessed using a spectophotometrer (NanoDrop). 1 mg of RNA
was retrotranscribed using High Capacity cDNA Reverse Tran-
scription Kit (Applied Biosystems) following manufacturer condi-
tions for 10 min at 25 1C followed by 120 min at 37 1C. cDNAs
were stored at �20 1C. qPCR was performed on a custom pre-
plated TaqMan Gene Expression Assays set in a 384-well plate
(Applied Biosystems) (See Appendix). The amount of RNA was
calculated through the 2�DDCt method [18] using Cyclophillin A
(PPIA) as reference gene. Samples were from 3 months-mice in a
mix background (C57Bl6-129). The two experimental conditions
tested were lithiasic (presence of calculi, P) and non lithiasic (NP)
slc7a8� /� mice [19]. As control, samples from wild type animals
(WT, males and females) were used.

Genes analyzed were arf1, odc1 and s100a11 (see Example
dataset 2 on http://regstattools.net/br) [19]. For each gene ana-
lyzed, a total of 25, 16 and 17 expression values were used for the
NP, P and control (reference) conditions, respectively. Therefore,
the sampling distributions of 2 expression ratios were calculated
for each gene (one for NP condition versus control condition, and
another one for P condition versus control condition).

3. Results

3.1. Simulation study: BootstRatio versus Bayesian approach

Table 1 shows results of the simulation study comparing the
Bootstratio approach with the Bayesian one in the estimation of

P(RGT41) highlighting which one of the methods perform better
in each situation. The upper part of the table shows the REP as
well as P(RBt41) and P(RBY41) assuming a Gamma probability
distribution and a Uniform probability distribution for the
numerator (XT) of the simulated ratio. The Bayesian approach
performed slightly better than the Bootstratio one when the
simulated distribution of XT was Gamma (N¼60 and
P(RGT41)¼0.25 and P(RGT41)¼0.5; N¼20 and P(RGT41)¼0.25;
N¼12 and P(RGT41)¼0.25 and P(RGT41)¼0.5). Therefore, it
performed better in 5 out of 9 situations when the simulated
distribution of XT is Gamma. However, when the simulated
distribution of XT was Uniform, the Bootstratio approach performs
better than the Bayesian one in 7 out of 9 situations. Although
we found that the Bootstratio approach performed better
than the Bayesian method in 11 out of 18 times, we make
note that the Bayesian method performed slightly better
than BootstRatio when sample size was set to N¼12 (4 out of
6 times).

When random noise is added to the distribution of XT (lower
part of the Table), the Bootstratio method performed better in
7 out of 9 times when the simulated distribution of XT is Gamma
with random noise. The same results were observed when the
simulated distribution of XT was Uniform with random noise.
Therefore, under the condition of random noise added to the data,
the Bootstratio approach performs better than the Bayesian one in
14 out of 18 times.

3.2. Real data example application: unique sample for each gene

with no control sample (samples already normalized against the

control)

Fig. 2(a) shows the web page where the user can perform this
type of analysis. The table of statistics returned by BootstRatio
web application is shown in Table 2. These statistics are the
observed mean ratio (Mean.Obs), median (Median.Obs), standard
error (SE.Obs), gene sample size (N.Obs) and the median (Med-
ian.Boot), and standard deviation (SD.Boot) of the bootstrap
median ratio of the samples, respectively. The two following
columns of this table refer to

_
PðmRG

41Þ, column Prob.Ratio41,
whereas column Prob.Ratioo1 refers to 1�

_
PðmRG

41Þ. The last
five columns may allow the user to easily assess the level of
significance of the bootstrap ratios. Note that none of the genes
was statistically significant to levels below 10%, however, the

Table 2
Statistics of expression ratios extracted from BootsRatio web application for the unique condition for each gene example dataset from Abril et al., 2008.

Gene Mean.Obs Median.Obs SE.Obs N.Obs Median.Boot SD.Boot pvalue
(Ratioo1)

pvalue (Ratio41) po0.1 po0.05 po0.01 po0.001 po0.0005

12s/MT-RNR1 0.905 0.841 0.085 19 0.897 0.150 0.245 0.755 N N N N N

MT-ATP6 0.914 0.948 0.099 19 0.905 0.172 0.292 0.708 N N N N N

MT-CO2/COX2 0.900 0.932 0.111 19 0.877 0.183 0.242 0.758 N N N N N

Gene: Name of the Gene.

Mean.Obs: observed mean of the gene expression ratio.

Median.Type: observed mean of the gene expression ratio.

SE.Obs: standard error of the observed gene expression ratio.

N.Obs: sample size of the observed expression ratio.

Median.Boot: median value of the bootstrap ratio.

SD.Boot: standard deviation of the bootstrap ratio.

Prob.Ratio41: is the relative frequency of Median.Boot41. It approximates to a p-value.

Prob.Ratioo1: is the relative frequency of Median.Booto1. It approximates to a p-value.

po0.1: indicates if any of Prob.Ratio41 or Prob.Ratioo1 values are lower than 0.1.

po0.05: indicates if any of Prob.Ratio41 or Prob.Ratioo1 values are lower than 0.05.

po0.01: indicates if any of Prob.Ratio41 or Prob.Ratioo1 values are lower than 0.01.

po0.001: indicates if any of Prob.Ratio41 or Prob.Ratioo1 values are lower than 0.001.

po0.0005: indicates if any of Prob.Ratio41 or Prob.Ratioo1 values are lower than 0.0005.
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bootstrap analysis shows that there is a high probability to
observe a decreased expression (see column Prob.Ratioo1) of
these genes. We did not observe large differences comparing
these results with those reported in the previous paper of [17].
Using BootstRatio we have obtained the following probabi-
lities

_
PðmR12s=MT-RNR1

o1Þ ¼ 0:755,
_
PðmRMT-CO2=COX2

o1Þ ¼ 0:708 and
_
PðmRMT-ATP6

o1Þ ¼ 0:758 whereas in the previous analysis using a
Bayesian method these probabilities were 0.6740, 0.6844 and
0.6647, respectively. Fig. 3(a) shows the boxplot representation of
the three genes analyzed depicting their tendency towards a
decreased expression. Ratios above one indicates increased
expression whereas those ratios below one shows decreased
expression of the analyzed gene.

3.3. Real data example application: several samples for each gene

with a control sample (when control samples are provided in the

data set)

Fig. 2(b) shows the web page where the user can perform this
type of analysis. Table 3(a) shows the table of descriptive
statistics of the observed data whereas Table 3(b) shows the
statistics obtained from the permutation’s test analysis. If we
consider that conditions with type I error of a¼0.05 –
_
PðRG41Þo0:05 – are statistically significant, we observe that
only gene Odc1 expression ratio with condition P can be con-
sidered to be statistically significant with a sampling median ratio
of 0.544 and

_
PðRodc1�P o1Þ ¼ 0:0390. The gene S100a11 expression

ratio with condition P could be also considered to be statistically
significant if we set a type I error of a¼0.10 – which is not
commonly assumed –

_
PðRs100a11�P o1Þ ¼ 0:089. Although arf1

gene expression ratio cannot be considered to be statistically
significant, our approach shows that there might be a probability
that a significant lower expression than control conditions can be
observed for NP condition,

_
PðRarf 1�NP o1Þ ¼ 0:649 and for P

condition,
_
PðRarf 1�P o1Þ ¼ 0:671, respectively. Fig. 3(b) depicts

the boxplots for each gene and experimental conditions.

4. Conclusions

Real-time PCR is an easy to perform methodology, provides the
necessary accuracy and produces reliable as well as rapid quanti-
fication results which require a reproducible methodology and
adequate mathematical models for data analysis. Other statistical
methods have been described for this type of analysis [3–8] which
may entail assuming an underlying probability distribution of the
data. As the gene expression ratio is a positive function which
may depend on the ratio of two random variables with positive
support, a probability distribution with positive support such as
Gamma might be used for parametric inference [20]. On the other
hand, most parametric hypothesis tests are based on asymptotic
distributions relying on large sample size, although data sample
size is frequently smaller than would be considered optimal
(No20). Bayesian simulation methods [21] have been shown to
be an alternative to these tests in this situation [17]. In our
simulation study we can suggest a similar conclusion when
sample sizes are small. When N¼12 the Bayesian method
performed slightly better than the Bootstrap one except when
random noise was added. It might suggest that the choice of the
prior distribution may affect in certain situations even when this
prior distribution is non informative. In this line, the choice of the
probability distribution for the expression ratio can still be a
critical point on the analysis because inference strongly depends
on these parametric assumptions and the erroneous choice of this
distribution may lead to not reliable conclusions.

Resampling techniques can be used although we must assume
independence of the samples [9]. Advantages of these methods
are that they not require the usual normality assumption to be
met, and that it can be effectively utilized even with small sample
sizes. Since assumption of a probability distribution for biological
data can be complex, these methods have been widely used in the
bioinformatics field [14]. Another advantage of these techniques is
that we can obtain a large sample distribution of the statistic of
interest, in our case, the median ratio, and therefore, probabilities –
estimated by means of relative frequencies – and other statistics can

The x-axis refers to experimental condition for each geneanalyzed where as the y-axis refers to
the bootstrap median of expression ratios between sample type and sample control

The x-axis refers to gene where as the
y-axis refers to the bootstrap median
of expression ratios

Note:The limits of each box plot represents the rank of the data. The lower and upper edges of the box are the first and third
quartiles, therefore 50% of the data occurs in this range. The thick-dark horizontal segment represents the median.

Fig. 3. Boxplots of the Bootstrap Median Expression Ratios: (a) Unique condition for each gene example dataset from Abril et al., 2008; (b) Several conditions for each gene

example dataset.
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be computed in this sample. Although resampling and estimation
requires intensive computation, we also present a web application,
BootstRatio, to perform this type of analysis with the advantage that
the user will get the results on a format that is easily transformed
into publication data and easily understandable by non-experts in
statistics. Besides, this approach could be extended to other type of
analysis in which the final results are provided as ratios, such as
western, southern and northern blots.

The permutation test and bootstrap approach are a practical
solution for the statistical analysis of gene expression ratio
determined by real-time PCR. The web application BootstRatio
is easily accessible, freely available and developed for the purpose
of the intensive computation statistical analyses.
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Appendix A

List of TaqMan assays used. The link on the Ref TaqMan column
directs to Applied Biosystem’s web site at the specific gene expres-
sion assay. Reference gene is indicated in bold characters.

Gene Ref TaqMan
S100a11 Mm00845129_g1
Ppia (control) Mm02342430_g1
Arf1 Mm01946109_uH
Odc1 Mm01964631_g1

Appendix B. Supplementary materials

Supplementary materials associated with this article can
be found in the online version at doi:10.1016/j.compbiomed.
2011.12.012.
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