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Objectives: Gene expression analysis by quantitative PCR is a standard laboratory technique for RNA quanti-
fication with high accuracy. In particular real-time PCR techniques using SYBR Green and melting curve analysis
allowing verification of specific product amplification have become a well accepted laboratory technique for
rapid and high throughput gene expression quantification. However, the software that is applied for quantifica-
tion is somewhat circuitous and needs actually above average manual operation.
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gl?g:ords' (i.e., MAKERGAUL) for quantification of gene expression data obtained by real time PCR technology.
Expression analysis Results: The developed software was evaluated with an already well characterized real time PCR data
DNA quantification set and the performance parameters (i.e., absolute bias, linearity, reproducibility, and resolution) of the
Computer-based analysis algorithm that are the basis of our calculation procedure compared and ranked with those of other imple-
MAKERGAUL mented and well-established algorithms. It shows good quantification performance with reduced require-
MAK2 ments in computing power.

MIQE Conclusions: We conclude that MAKERGAUL is a convenient and easy to handle software allowing

Open source software

accurate and fast expression data analysis.

© 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

Introduction

Reverse transcription quantitative polymerase chain reaction
(RT-qPCR) is a popular rapid quantification technology with capacity
to detect and measure minute amounts of nucleic acids in relative or
absolute term in nearly any kind of biological sample. Based on the
practical simplicity of this technique, a wide variety of applications
of this technology have been developed in research and diagnostic.
However, there are several potential experimental drawbacks and
shortcomings that might arise from inadequate storage of samples
taken for RNA isolation and cDNA synthesis, poor choice of primers
used in PCR, occurrence of PCR inhibitors in samples, unidentified
contamination, and inappropriate data and statistical analysis. All
these factors may potentially result in inadequate and conflicting
data [1]. In addition, most often published studies provide incom-
plete information about the experimental setup.

Abbreviations: CPU, central processing unit; dsDNA, double stranded DNA; qPCR,
quantitative PCR; RT, reverse transcription.
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In addition, appropriate selection of reference genes is known to be im-
portant to obtain accurate and reproducible RT-qPCR results [2,3]. It is
further known that the examination of raw data per se, evaluation of
quality and reliability of measurements, and the generation of report-
able (interchangeable) results strongly affect resolution, precision and
robustness of a PCR method [4]. In particular, the estimation of the
PCR efficiency, variable factors affecting the efficiency value, and the ac-
curate mathematical evaluation by various qPCR calculation models
were identified as critical parameters in absolute and high precision
DNA quantification [4].

In most laboratories, the standard curve technique for absolute
quantification or the 2722, method are taken to estimate target gene
concentration [5,6]. However, both strategies assume amplification effi-
ciencies to be identical or even at optimum for both the target and ref-
erence templates. Therefore, several other models for accurate
quantification of qPCR data were subsequently developed. In most
models, the shape of a single qPCR amplification curve was proposed
to be sufficient to uniquely determine initial DNA concentration
[7-11]. Based on the fact that the amplification rate correlates to the
amplicon's quantity, it is in principle possible to allow target quantifica-
tion via linear regression analysis. Therefore, implementation of simple
software packages for absolute quantification of qPCR data is possible
[11]. More recently, a two-parameter mass action kinetic model of
PCR, i.e., the MAK2 algorithm, was presented that allows accurate quan-
tification of target concentration from a single qPCR assay without con-
struction of standard curves [12].

0009-9120/$ - see front matter © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.clinbiochem.2013.10.017


http://dx.doi.org/10.1016/j.clinbiochem.2013.10.017
mailto:Christoph.Bultmann@rwth-aachen.de
mailto:rweiskirchen@ukaachen.de
http://dx.doi.org/10.1016/j.clinbiochem.2013.10.017
http://www.sciencedirect.com/science/journal/02637296

118 CA. Bultmann, R. Weiskirchen / Clinical Biochemistry 47 (2014) 117-122

We here adapted and expanded this elaborated model and integrated
it into a novel easy to handle open source software package, i.e.,
MAKERGAUL, for estimating gene expression data by real time PCR tech-
nology. We evaluated the performance of our software with an already
well characterized real time PCR data set that was recently published
together with all statistical evaluation sheets. Based on our evaluation,
we anticipate that the MAKERGAUL software allows rapid data analysis
and quantification without the need to generate a standard curve, or
the need for normalization to a selected reference gene.

Material and methods
Quantification model

For quantification of qPCR data, we considered to create a model that
allows accurate quantification of target concentration from a single
qPCR assay with high computation speed, without the demand to con-
struct a standard curve, or the need for normalization. These requests
were realized by combining a mechanistic, two-parameter mass action
kinetic model of PCR, i.e., the MAK2 model, with findings of a study
demonstrating that the main factor that is responsible for the plateau
phase in PCR is caused by binding of DNA polymerase to its amplifica-
tion products [12,13]. In brief, the model that we have generated is
based on six theoretical assumptions (Supplemental material 1) that
were entered in mathematical formulas and are the basis of the
MAKERGAUL algorithm described in this study. The developed model
includes also the post exponential cycles of PCR (Fig. 1) and works
without central processing unit (CPU) or intensive arithmetic such as
logarithm and e-function. In brief, the usable quantities of DNA poly-
merase and DNA are calculated in each cycle (formulas 1 and 2) and
converted into a particular fluorescence value (formula 3) as follows:

EnZymeSusable n-1

EnZymesusable n—
1+ DNAcycle n-1 X FaCtorinhibition
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Fig. 1. Comparison of MAKERGAUL and MAK2 models. (A) The measured and
MAKERGAUL-calculated fluorescence values of well 332 (including 33 cycles) of the
data set given for the ECEL1 gene [30] were compared. (B) The measured and MAK2-
calculated fluorescence values of well 332 (including 25 cycles) of the data set given for
the ECEL1 gene [30] were compared.
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In formula 1, we defined Factoriynibition @S a variable for double
stranded DNA (dsDNA) inhibiting the DNA polymerase and inserted it
into the MAKERGAUL algorithm (for more details about the analysis
model see Supplemental material 1).

Software development

For development of a platform-independent, open source and easy
to use software that includes our analysis algorithm, we developed a
server side solution that we implemented in different programs and
server side scripting languages such as PHP [14-16], HTML [17], CSS
[18], JavaScript [19], C++ [20-24] including the libraries GMP v. 5.1.2
[25] and MPFR v. 3.1.2 [26], as well as some other helpful components
[27,28].

In brief, the user interface is created in and distributed by PHP pro-
grams and HTML in the client's web browser, while data analysis is car-
ried out in C++-based subprograms. This strategy allows in future
integrating and linking new analysis tools to the program via new PHP
scripts and objects. In addition, in cases of problems with server execu-
tion rights the analysis can also be realized in PHP (for more information
refer to Supplemental material 2). The user interface is built in a classic
“plate setup screen” that allows reading of fluorescence data, individual
wells, and data processing with the analysis module. The final software
is enclosed in Supplemental material 3 that further contains the file
“readme.txt” providing some important safety precautions for installing
and use of our software.

Model evaluation

For evaluating the performance of our model, we re-analyzed an
existing, well documented RT-PCR data set developed by Vermeulen
et al. [29]. Concisely, the complete collection of gene expression data
contains fluorescence values from 64 different plates with samples
from patients and gene specific standard dilution series that were gen-
erated on a standard LightCycler480 system (Roche Diagnostics, Mann-
heim, Germany) with primers for different target genes. This data set
was recently used in another large comparative study in which different
methods for analyzing amplification curves of RT-qPCR were rigorously
compared and referred in a respective study as ‘biomarker data set’ [30],
a term that we will also use in our study in the following. For our eval-
uation, we only used the four-point 10-fold dilution series of each plate.
In addition, the data set of “AluSq” was excluded because the developed
algorithm is not capable to work on samples that contain competimer.
In a first step, the computation of each sample was done with the
MAKERGAUL model and collected data was inserted into a prepared
copy of “analysis_dilution_series.xls” described elsewhere [30]. Using
this data sheet we performed an extensive statistics for MAKERGAUL
to get information about the performance parameters (absolute) bias,
precision, resolution, linearity and changed variability (details see Sup-
plemental material 4). Based on our analysis, we found that the param-
eter Factorjphibiton varied only in a small range. To understand its
influence on the outcome of our analysis we added an additional soft-
ware module termed MAKERGAUL C that differs to the original
MAKERGAUL component in its possibility to assign Factoriypipition @
fixed value. Using this module we then re-analyze the data set, using
the mean of the calculated Factor;ynipition from every dilution series as
a fixed value in the subsequent cycle.

To allow comparison of the MAKERGAUL and MAK2 models, a
version of the MAK2 algorithm described previously [ 12] was integrated
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as an independent module in our software. The performance of the two
models was not separately compared because the C++ version re-
quires the MPFR library additional to the standard arbitrary precision
GMP library. As a consequence, this fact would otherwise artificially
handicap and worsen the performance and processing time in the
MAK2 model.

We next compared in more detail the performance of our two algo-
rithms with the results of the methods examined and described in [30]
as they where 5PSM [31], Cy0 [32], CAmpER: DART [33], CAmpER: FPLM
[34], FPK-PCR [35], LinRegPCR [36], LRE-qPCR [37], MAK2 [12], and PCR-
Miner [38]. Since a more detailed analysis of all these algorithms is
beyond the scope of this article, we focused on some special character-
istics of particular methods. A good overview of all the different quanti-
fication methods can be found in the Supplemental material of [30].

To perform individual algorithms with MAKERGAUL and MAKERGAUL_C,
we incorporated the original quantification data sets achieved by the
methods (given in the supplements of [30]) into prepared copies of
“analysis_dilution_series.xls” as described above. Like for MAKERGAUL
and MAKERGAUL_C, we only analyzed the data of the four-point 10-
fold dilution series of the 63 genes from the original biomarker data
set. To avoid any implementation-based errors, we further decided to
fall back on the original MAK2-delivered DNA values from this data
set instead of recalculating them in our software. The respective DNA
values that served as gold standard, named ‘Standard-Cq’ [30], were
obtained and used with the kind permission of Jan M. Ruijter. For LRE
qPCR, there were two data sets available, using a fixed (LRE-E100)
and a variable (LRE-Emax) PCR-efficiency for DNA calculation.

The parameters absolute bias, linearity, precision and resolution for
the 63 genes were compared by EXCEL and an additional program
[39], performing a Friedman test [40] and including the methods men-
tioned above. The null hypothesis in this statistic test is an equality of
all algorithms, expressed as an unpreferred order of the methods' rank-
ing per gene for the respective performance parameter analyzed. When
the hypothesis was rejected, a multiple comparison of the groups was
done to determine which subsets of methods are different [41]. Finally
the mean rank considering the individual ranking of the four perfor-
mance parameters per method were analyzed in a Friedman-test as
described above. The complete results of this comparison are shown
in Table 1 and Supplemental material 5.

Results and discussion

Reliable detection and quantification of mRNA are fundamental in all
areas of molecular biology. There are numerous protocols available that
allow amplification of a specific mRNA and quantification of respective
target nucleic acid. However, the strategy and algorithms used for
data analysis most often requires establishment of a time- and labor-

Table 1

Comparative analysis of absolute bias, linearity, reproducibility and resolution of each method.

intensive standard curve for each gene investigated. In addition, the
software that is applied for quantification is often circuitous and needs
above average manual operation. Therefore, we tried to develop a
novel, simple to handle, open source software package for estimating
gene expression by real time PCR technology without the need for set-
ting up a calibration curve or requirement to perform a normalization
with a housekeeping gene.

Model developing outcome

To establish an appropriate model for our software, we combined
the MAK2 model that describes the accumulation of amplicon DNA dur-
ing PCR [12] with the fact that the main factor contributing to the pla-
teau phase in which the amplification reaction is lowered down
consists of DNA polymerase that binds to its amplification products
[13]. In the final software we have developed, i.e.,, MAKERGAUL, we
made the following six theoretical assumptions: (i) the educts of the
DNA polymerase is a DNA single strand and the product a double strand.
In each PCR cycle every DNA strand can be maximal doubled; (ii) the
generation of novel strands is dependent on the content of free DNA po-
lymerase [13]; (iii) the higher the DNA concentration, the more the DNA
polymerase is occupied by the DNA during the cycle, and the less often a
DNA strand encounters a free polymerase that copies it; and (iv) DNA
polymerases bind with a certain probability also to double stranded
DNA [13]. As a consequence, they are no longer available in the replica-
tion phase and the amount of usable polymerases decreases in each
cycle simultaneously; (v) the measured fluorescence of the real-time
PCR corresponds to the DNA concentration, along with the basis of fluo-
rescence in the measurement system [12]; and finally (vi) primer defi-
ciency plays no role in the late phase of the PCR when amplification is
lowered down [13]. Based on these assumptions, we have developed
mathematical algorithms that were integrated into MAKERGAUL.

One critical factor in all these calculations is the circumstance that
the precise factor at which each cycle is inhibited by binding of DNA po-
lymerase to double stranded DNA (dsDNA) is not known. Nevertheless,
we thought that the definition of Factoriynibition a5 @ constant instead of a
variable would enhance the overall accuracy of DNA quantification. For
this reason, we next determined the mean values for inhibition of each
analyzed gene with MAKERGAUL using again the published biomarker
data set of Ruijter et al. [30]. Although all these values were only mar-
ginally different in each set, they slightly varied between the different
genes. This finding demonstrated that Factoripipition iS an amplificon-
specific constant (see Supplemental material 5). As a result, for testing
MAKERGAUL_C we used the mean values for Factoriyhibition S€parately
for every gene as described above. The complete data sets that we
have used to calculate these constants are given in Supplemental mate-
rial 6.

Algorithm Absolute bias Linearity Reproducibility Resolution Mean rank Friedman subset
Cy0 213 (2) 321(1) 373 (2 3.330(2) 1.75 (1) 1
LinRegPCR 6.60 (4) 402 (2) 263 (1 2.780 (1) 2.00 (2) 1
Standart-Cq 2.10(1) 457 (3) 430 (3 4.270 (3) 2.50 (3) 1
MAKERGAUL_C 6.30 (3) 5.21(5) 5.83 (6 5.370 (5) 4.75 (4) 2
PCR_Miner 824 (9) 490 (4) 513 (4 4.890 (4) 5.25(5) 23
MAK2 7.30 (6) 5.59 (6) 5.70 (5 5.590 (6) 5.75 (6) 23
MAKERGAUL 6.83 (5) 6.46 (8) 6.14 (7 6.160 (8) 7.00 (7) 3
LRE qPCRE100 746 (7) 5.76 (7) 6.19(8 6.130 (7) 7.25(8) 3
5PSM 9.08 (12) 7.84 (9) 7.70 (9 8.030 (9) 9.75 (9) 4
DART 8.67 (10) 9.75 (10) 9.78 (10) 10.080 (10) 10.00 (10) 4
FPLM 7.95 (8) 1044 (11) 1073 (11) 10.590 (11) 10.25 (11) 45
LRE qPCR Emax 9.29 (13) 11.08 (12) 1143 (12) 11.490 (12) 12.25(12) 56
FPK_PCR 9.06 (11) 12.17 (13) 11.71 (13) 12.300 (13) 12.50 (13) 6

Please note: The first four columns contain the rank of the method for the performance parameters absolute bias, linearity, reproducibility, and resolution. It ranks the methods' average
performance over all 63 genes. The number in parentheses shows the rank of the methods' performance per indicator. The fifth column contains the methods' average rank overall
performance parameters. The last column shows the subgroups of methods which have a similar performance considering the four parameters.
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Resulting software

The final program is primarily designed for installation as a server-
based application. The principal data flow in MAKERGAUL and its indi-
vidual modules are depicted in Fig. 2. The operator termed “USER” pro-
vides relevant information and sends a request to the server harboring
the MAKERGAUL program. MAKERGAUL contains individual compo-
nents that have a modular structure. In the main menu the user clas-
sifies his samples and provides information on number of wells and
rows that should be quantified from respective plates. Alternatively,
preformed data sets that were already created on a real time PCR system
can be directly imported. In addition, the user can change data analysis
and output formats. A typical example screen that provides a good im-
pression of the program surface is depicted in Fig. 3. When the user
has incorporated or imported his data to be analyzed, the programs
can be executed and provide quantification data that can be easily
exported in formats that allow setting up of comparative expression
graphs.

CA. Bultmann, R. Weiskirchen / Clinical Biochemistry 47 (2014) 117-122

Noteworthy, as an important feature for evolving and improving the
software by other researchers, all components are designed and pub-
lished as open source software. Since there are some free-to-use web-
based solutions for other methods (e.g., [42] and [43]), we also want
to share the complete scripts (Supplemental material 3) which enable
everybody to set up own servers and add new algorithms.

Performance outcome

After developing and evaluating our two algorithms, we next com-
pared them with other established real-time PCR analysis methods
(see Model evaluation section and Table 1). In this analysis we could
show that the variant MAKERGAUL_C with fixed values for Factor-
inhibition Nas a convincingly better mean ranking than MAKERGAUL and
also a better one than the MAK2 algorithm, although this difference is
not statistically significant. Based on these and other findings, we rec-
ommend determining first the Factorihibition by MAKERGAUL in all sam-
ples of a particular experiment with similar primers. After that, building
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Fig. 2. Modules and data flow in MAKERGAUL. In the final program, the “User” provides raw data and makes analysis set up. The “Client” (i.e., Browser) transmits these data to the “Server”,
at which data is analyzed using php modules or external programs. The computed results are then returned to the “Client” and visualized to the User.
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Fig. 3. Representative screenshot of the MAKERGAUL user-interface. The data depicted in this figure is fictional and therefore not included in the supplemental package. On the left site of
the screenshot, the setting module is depicted. At the top the panel for upload, export, selection changing, and renaming are depicted. In the middle, every well has his own box in which all

data are stored in fly out windows as depicted.

a gene-specific average value for Factorinniition that is used for reanaly-
sis with MAKERGAUL_C will lead to better quantification results. As
already described above, Factoryhibition ShOws no concentration depen-
dency suggesting that there is no need to establish a special calibration
setup or dilution series for individual target sequences. We further sug-
gest that a once generated average for Factorypipition iS Suitable for quan-
tification in other experiments that use the same primers resulting in
similar amplicons.

The detailed comparison of the different models revealed that three
other methods have a significantly better average performance than the
MAKERGAUL_C algorithm (see Table 1, Friedman subset 1). Neverthe-
less, these methods have other limitations. Two of them (Cy0 and
Standard-Cq) need preparation of a standard curve for calibration in
every real time PCR experiment [30,32]. LinRegPCR as the third supe-
rior method requires the determination of the individual PCR effi-
ciency of every sample and calculation of the mean efficiency by
averaging at least two samples using the same primer combination
(producing the same amplicon) for reaching the shown performance
[30,36]. MAKERGAUL and MAKERGAUL_C do not have these require-
ments on experimental design or individual probes. Therefore,
choosing MAKERGAUL/MAKERGAUL_C for data analysis is in our
view particularly useful when dealing with large sets of samples
resulting in identical amplicons.

A further comparison of the execution times between MAKERGAUL
and its relative MAK2 was not possible because the MAK2 algorithm
in our implementation is somewhat handicapped by the fact that this
algorithm would need to incorporate an additional library to perform
these kinds of studies (see Material and methods). Nevertheless, there
is a general advantage in MAKERGAUL due to the fact that this algorithm

does not require computation of logarithms, which needs iterations of
basic arithmetic functions, lookup tables or both [44]. Moreover, the
number of required iterations and lookup tables dramatically extends
with requested precision. In our case, in which the compared models
have to deal with numbers from 1E3 to 1E-14 and further need exact
computation even down to this precision, it is hard to establish an im-
plementation of a function that can beat an algorithm that only contains
fast basic arithmetic operations.

Conclusion

In summary, MAKERGAUL shows an overall good precision, line-
arity, and resolution in calculating DNA quantities over a great
range of genes and concentrations. Furthermore, the analysis with
this algorithm has short execution times. The MAKERGAUL_C imple-
mentation complements the method with the possibility to raise the
level of performance above MAK2 by using an amplicon-specific constant
that can be determined once for all experiments (see Performance
outcome) section.

However, there are still some important points that need improve-
ment. Like with the MAK2 model, the analysis of reactions performed
with competimer representing primers that bind to target sequences
but failed to be extended is still not possible with MAKERGAUL. Also im-
provement of sample quality control and noise reduction of baseline
fluorescence are conceivable that we must admit are presently some-
what more perfect in the LinRegPCR implementation [45].

In summary, we hope that our study and the establishment of the
open source software MAKERGAUL will improve the performance and
accuracy of nucleic acid quantification. In addition, the disclosure of all
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source codes provides in our view a solid basis for developing improved
software packages in which existing limitations of quantification are
eliminated.

Conflict of interest

The authors have nothing to declare.

Acknowledgments

We would like to thank Jan M. Ruijter for kindly providing supple-
mental and unpublished data of his studies [30] and providing support
to it, especially supplying us with the above mentioned Standard-Cq
quantification data. Moreover, the authors would like to thank Ryan J.
Russell who posted the minGW-w64-toolchain at sourceforge.net [46]
and helped the authors in the understanding and configuration of
this tool for our purposes. RW is supported by a grant of the German
Research Foundation (SFB TRR 57, P13) and a grant from the IZKF
Aachen. The sponsors had no influence on study design or report
writing.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.clinbiochem.2013.10.017.

References

[1] Bustin SA, Benes V, Garson JA, Hellemans ], Huggett ], Kubista M, et al. The MIQE
guidelines: minimum information for publication of quantitative real-time PCR
experiments. Clin Chem 2009;55:611-22.

[2] Lanoix D, Lacasse AA, St-Pierre J, Taylor SC, Ethier-Chiasson M, Lafond ], et al. Quanti-
tative PCR pitfalls: the case of the human placenta. Mol Biotechnol 2012;52:234-43.

[3] Jacob F, Guertler R, Naim S, Nixdorf S, Fedier A, Hacker NF, et al. Careful selection of
reference genes is required for reliable performance of RT-qPCR in human normal
and cancer cell lines. PLoS One 2013;8(3):e59180.

[4] Karlen Y, McNair A, Perseguers S, Mazza C, Mermod N. Statistical significance of
quantitative PCR. BMC Bioinformatics 2007;8:131.

[5] Bustin SA. Absolute quantification of mRNA using real-time reverse transcription
polymerase chain reaction assays. ] Mol Endocrinol 2000;25:169-93.

[6] Livak K], Schmittgen TD. Analysis of relative gene expression data using real-time
quantitative PCR and the 2722% method. Methods 2001;25:402-8.

[7] Liu W, Saint DA. A new quantitative method of real time reverse transcription poly-
merase chain reaction assay based on simulation of polymerase chain reaction
kinetics. Anal Biochem 2002;302:52-9.

[8] Liu W, Saint DA. Validation of a quantitative method for real time PCR kinetics.
Biochem Biophys Res Commun 2002;294:347-53.

[9] Rutledge RG. Sigmoidal curve-fitting redefines quantitative real-time PCR with the
prospective of developing automated high-throughput applications. Nucleic Acids
Res 2004;32:e178.

[10] Smith MV, Miller CR, Kohn M, Walker NJ, Portier CJ. Absolute estimation of initial con-
centrations of amplicon in a real-time RT-PCR process. BMC Bioinformatics 2007;8:409.

[11] Rutledge RG, Stewart D. A kinetic-based sigmoidal model for the polymerase chain
reaction and its application to high-capacity absolute quantitative real-time PCR.
BMC Biotechnol 2008;8:47.

[12] Boggy GJ, Woolf PJ. A mechanistic model of PCR for accurate quantification of quan-
titative PCR data. PLoS One 2010;5(8):e12355.

[13] Kainz P. The PCR plateau phase — towards an understanding of its limitations.
Biochim Biophys Acta 2000;1494:23-7.

[14] PHP-reference. http://www.php.net/. [retrieved May 15, 2013].

[15] EasyPHP 12.1. http://www.easyphp.org/. [retrieved May 15, 2013].

[16] Weaverslave 3.9.18. http://www.weaverslave.ws/. [retrieved May 15, 2013].

[17] HTML-reference. http://de.selfhtml.org/. [retrieved May 10, 2013].

[18] CSS-reference. http://www.w3schools.com/css/default.asp. [retrieved May 2,
2013].

[19] JavaScript-reference. http://www.w3schools.com/js/default.asp. [retrieved May 15,
2013].

[20] NetBeans IDE 7.3. http://netbeans.org/downloads/. [retrieved June 23, 2013].

[21] C++-reference. http://www.cplusplus.com/reference/. [retrieved June 23, 2013].

[22] Wolf ]. Grundkurs C++. 2nd ed. Bonn: Galileo Computing978-3-8362-2294-5;
2013.

[23] MinGW-w64 GCC. http://mingw-w64.sourceforge.net/download.php. [retrieved
June 26, 2013].

[24] MSYS rev13. http://sourceforge.net/projects/mingwbuilds/files/external-binary-
packages/. [retrieved July 7, 2013].

[25] GMP-reference. http://gmplib.org/manual/. [retrieved November 2, 2013].

[26] MPFR-reference. http://www.mpfr.org/mpfr-current/mpfr.html. [version 3.1.2 (re-
trieved June 23, 2013)].

[27] Fedora 19. http://fedoraproject.org/de/. [retrieved July 10, 2013].

[28] GCC version 4.8.1 and depending packages. http://gcc.gnu.org/. [retrieved July 10,
2013].

[29] Vermeulen |, De Preter K, Naranjo A, Vercruysse L, Van Roy N, Hellemans J, et al.
Predicting outcomes for children with neuroblastoma using a multigene-
expression signature: a retrospective SIOPEN/COG/GPOH study. Lancet Oncol
2009;10:663-71.

[30] Ruijter JM, Pfaffl MW, Zhao S, Spiess AN, Boggy G, Blom ], et al. Evaluation of qPCR
curve analysis methods for reliable biomarker discovery: bias, resolution, precision,
and implications. Methods 2013;59:32-46.

[31] Spiess AN, Feig C, Ritz C. Highly accurate sigmoidal fitting of real-time PCR data by
introducing a parameter for asymmetry. BMC Bioinformatics 2008;9:221.

[32] Guescini M, Sisti D, Rocchi MB, Stocchi L, Stocchi V. A new real-time PCR method to
overcome significant quantitative inaccuracy due to slight amplification inhibition.
BMC Bioinformatics 2008;9:326.

[33] Peirson SN, Butler JN, Foster RG. Experimental validation of novel and conventional
approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 2003;31:
e73.

[34] Tichopad A, Dilger M, Schwarz G, Pfaffl MW. Standardized determination of
realtime PCR efficiency from a single reaction setup. Nucleic Acids Res
2003;31:e122.

[35] Lievens A, Van Aelst S, Van den Bulcke M, Goetghebeur E. Enhanced analysis of real-
time PCR data by using a variable efficiency model: FPK-PCR. Nucleic Acids Res
2012;40:e10.

[36] Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff M, et al.
Amplification efficiency: linking baseline and bias in the analysis of quantitative
PCR data. Nucleic Acids Res 2009;37:e45.

[37] Rutledge RG. A Java program for LRE-based real-time qPCR that enables large-scale
absolute quantification. PLoS One 2011;6:e17636.

[38] Zhao S, Fernald RD. Comprehensive algorithm for quantitative real-time polymerase
chain reaction. ] Comput Biol 2005;12:1047-64.

[39] Friedman test: non-parametric 2-way ANOVA. http://www.hartfaalcentrum.nl/index.
php?main=files&sub=0. [retrieved July 10, 2013].

[40] Friedman M. The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. ] Am Stat Assoc 2012;32:675-701.

[41] Conover W]J. Practical non-parametric statistics. 2nd ed. New York: John Wiley &
Sons; 1980 299-302.

[42] Cy0 quantification. http://www.cyOmethod.org. [retrieved October 6, 2013].

[43] PCR miner. http://www.miner.ewindup.info. [retrieved October 6, 2013].

[44] Vinyals O, Friedland G. A hardware-independent fast logarithm approximation with
adjustable accuracy. A hardware-independent fast logarithm approximation with
adjustable accuracy. Tenth IEEE international symposium on multimedia (ISM2008),
December 15-17, 2008, Berkeley, California, USA; 2008. p. 61-5.

[45] LinRegPCR. http://www.linregpcr.nl . [retrieved October 6, 2013].

[46] Russell R]. Netbeans and MinGW-w64. http://stackoverflow.com/questions/8478317/
netbeans-and-mingw-w64. [retrieved June 23, 2013].


http://dx.doi.org/10.1016/j.clinbiochem.2013.10.017
http://dx.doi.org/10.1016/j.clinbiochem.2013.10.017
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0005
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0005
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0005
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0010
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0010
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0015
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0015
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0015
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0020
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0020
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0025
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0025
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0030
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0030
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0030
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0030
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0030
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0035
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0035
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0035
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0040
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0040
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0045
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0045
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0045
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0050
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0050
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0055
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0055
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0055
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0060
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0060
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0065
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0065
http://www.php.net/
http://www.php.net/
http://www.easyphp.org/
http://www.easyphp.org/
http://www.weaverslave.ws/
http://www.weaverslave.ws/
http://de.selfhtml.org/
http://de.selfhtml.org/
http://www.w3schools.com/css/default.asp
http://www.w3schools.com/css/default.asp
http://www.w3schools.com/js/default.asp
http://www.w3schools.com/js/default.asp
http://netbeans.org/downloads/
http://netbeans.org/downloads/
http://www.cplusplus.com/reference/
http://www.cplusplus.com/reference/
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0070
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0070
http://mingw-w64.sourceforge.net/download.php
http://mingw-w64.sourceforge.net/download.php
http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages/
http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages/
http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages/
http://gmplib.org/manual/
http://gmplib.org/manual/
http://www.mpfr.org/mpfr-current/mpfr.html
http://www.mpfr.org/mpfr-current/mpfr.html
http://fedoraproject.org/de/
http://fedoraproject.org/de/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0075
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0075
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0075
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0075
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0080
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0080
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0080
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0085
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0085
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0090
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0090
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0090
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0095
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0095
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0095
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0100
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0100
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0100
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0105
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0105
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0105
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0110
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0110
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0110
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0115
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0115
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0120
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0120
http://www.hartfaalcentrum.nl/index.php?main=files&sub=0
http://www.hartfaalcentrum.nl/index.php?main=files&sub=0
http://www.hartfaalcentrum.nl/index.php?main=files&sub=0
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0125
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0125
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0130
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0130
http://www.cy0method.org
http://www.cy0method.org
http://www.miner.ewindup.info
http://www.miner.ewindup.info
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0135
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0135
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0135
http://refhub.elsevier.com/S0009-9120(13)00491-8/rf0135
http://www.linregpcr.nl
http://stackoverflow.com/questions/8478317/netbeans-and-mingw-w64
http://stackoverflow.com/questions/8478317/netbeans-and-mingw-w64
http://stackoverflow.com/questions/8478317/netbeans-and-mingw-w64

	MAKERGAUL: An innovative MAK2-based model and software for
real-time PCR quantification

	Introduction
	Material and methods
	Quantification model
	Software development
	Model evaluation

	Results and discussion
	Model developing outcome
	Resulting software
	Performance outcome
	Conclusion

	Conflict of interest
	Acknowledgments
	Appendix A. Supplementary data
	References


